&

daN>=X0ID

Seven Ways to
Hang Yourself with

Google Android

Yekaterina Tsipenyuk O'Neill Erika Chin
Principal Security Researcher Ph.D. Student at UC Berkeley

Yekaterina Tsipenyuk O’Neil

" Founding Member of the Security Research
Group at Fortify (now an HP Company)

= Code audits, identifying insecure coding
patterns, and providing security content for
Fortify's software security products

= B.S. and M.S. in CS from UC San Diego

Erika Chin

Ph.D. student in Computer Science at UC
Berkeley (Security research group)

B.S. from University of Virginia

Research interest in improving mobile phone
security

Recently presented at MobiSys 2011 on
vulnerabilities stemming from inter-
application communication in Android

Overview

Introduction to Google Android
Seven Ways to Hang Yourself
Results of Empirical Analysis

Conclusion

Introduction to
GOOGLE ANDROID

Introduction to Google Android

= Android architecture
= Security model

= Application breakdown
— Android manifest
— Components
— Inter-component communication

Android Architecture

= Applications
= Application framework (SDK)
= Dalvik virtual machine
— Customized bytecode (.dex files)
= Native libraries

— Graphics, database management, WebKit, etc.
— Accessed through Java interfaces

* Linux kernel

— Device drivers, memory management, etc.
Lower

7

Security Model

= Applications have unique UIDs

— Run as separate processes on separate VMs

— Typically cannot read each other’s data and code
" Linux-style file permissions

= Android permissions protect
— Access to sensitive APIs
— Access to content providers

— Inter- and intra-application communication

Application Breakdown

= Applications are divided into components

= 4 types of components
— Activities
— Services
— Broadcast Receivers
— Content Providers

Android Manifest

Each application contains a manifest

<manifest ...>
<application>
<activity android:name=“.MyActivity”>...</activity>
<receiver android:name="“.MyReceiver”>...</receiver>
</application>

<uses-sdk android:minSdkVersion=%“8" />
<uses—-feature android:name=“android.hardware.CAMERA"” />

<uses-permission
android:name=“android.permission.INTERNET"” />

<uses-permission
android:name=“android.permission.CAMERA” />

<permission android:name="“com.emc.NewPermission”
</manifest>

7

Inter-Component Communication

= Uses Intents (messages)

" |ntents can be sent between components

— Used for both intra- and inter-application
communication

— Event notifications (including system events)

Sender p - — Receiver

Intent

Explicit Intents

" Exact recipient is specified

Name: MapActivity

\YETe)

Yel
P App

To: MapActivity

Only the specified destination receives this message

(= 7,

Implicit Intents

= |Left up to the platform to decide where it
should be delivered

Handles Action: VIEW

Map
App

Handles Action: DISPLAYTIME

Implicit Intent Clock
Action: VIEW App

Implicit Intents

Handles Action: VIEW

Handles Action: VIEW

Implicit Intent Browser
Action: VIEW App

Explicit vs. Implicit Intents

Explicit Intent:
Intent 1 = new Intent();

1.setClassName (“some.pkg.name”,
“some.pkg.name.TestDestination”);

Implicit Intent:
Intent 1 = new Intent();

1.setAction(Ymy.special.action”);

Component Protection

= Components can be made accessible to other
applications (exported) or be made private

— Default is private ©
— Converted to public when component is registered

to receive implicit Intents ®

= Components can be protected by permissions

7

Component Permissions

App 1

Has RETRIEVE Permission
Retrieves Picture

Requires RETRIEVE
Permission
Displays Picture
Takes Picture

Requires CAMERA
Permission

Seven Ways to Hang Yourself with
GOOGLE ANDROID

Google Android Vulnerabilities

. Unauthorized Intent Receipt
ntent Spoofing
. Persistent Messages: Sticky Broadcasts

nsecure Network Communication
. SQL Injection
. Overprivileged Applications

1
2
3
4. Insecure Storage
5
6
7/

1. Unauthorized Intent Receipt

= Attack: Malicious app intercepts an Intent

= Arises when Intents are implicit (public) and
do not require receiving components to have
strong permissions

= Can leak sensitive program data and/or
change control flow

Intent 1 = new Intent();
1.setAction (“my.special.action”);
[startActivity|sendBroadcast|startService] (1) ;

7

1. Example

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

Showtime
Search

Implicit Intent
Action:
willUpdateShowtimes

Handles Actions:
willUpdateShowtimes,
showtimesNolLocationError

Results Ul

100 B 4 M@ 10:49em

Showtimes

wd&(‘)é

Movies TV Celebrities Showtimes

Thursday, June 23

Current Location

{UQ Bad Teacher (2011)
" Rated R, 1 hr 32 mins, 6.3/10

Showtimes from Century Richmond
Hilltop 16, Century San Francisco Centre

9 and XD, and 1 other...

Cars 2(2011)
=+ Rated G, 1 hr 53 mins, 6.9/10

Theaters

1. Example

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

Showtime
Search

Implicit Intent
Action:
willUpdateShowtimes

Handles Actions:
willUpdateShowtimes,
showtimesNolLocationError

Results Ul

1. Example

Handles Action:
willUpdateShowtimes,
showtimesNolLocationError

Malicious
Receiver

Showtime
Search

Implicit Intent
Action:
willUpdateShowtimes

/

Sending Implicit Intents makes communication public

7

1. Recommended Fix

Intent 1 = new Intent();

1.setClassName (“some.pkg.name”,
“some.pkg.name.TestDestination”);

or

Intent 1 = new Intent();

1.setAction (“my.special.action”);
sendBroadcast (1, “my.special.permission”);

7

2. Intent Spoofing

= Attack: Malicious app sends an Intent,
resulting in data injection/state change

= Arises when components are public and do
not require senders to have strong
permissions

<recelver androild:name="my.speclal.receiver”>
<lntent-filter>

<action android:name=“my.intent.action” />
</intent-filter>
</receiver>

7

2. Example

Malicious
Component

Action:
showtimesNolLocationError

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNolLocationError

Results Ul

7

B @ Ml @ 10:49» 103 B 7 Bl @ 10:49em

FE—

Showtimes - Showtimes

O a H B O a

Movies TV Celebrities Showtimes News Movies TV Celebrities Showtimes

Thursday, June 23 Thursday, June 23

Current Location Current Location

New This Week Please specify a location

(U@ Bad Teacher (2011) No showtimes were found for the
* & Rated R, 1 hr 32 mins, 6.3/10 selected date and location.

Showtimes from Century Richmond

Hilltop 16, Century San Francisco Centre »
9 and XD, and 1 other...

28 Cars 2(2011)
5 Rated G, 1 hr 53 mins, 6.9/10

Showtimes from AMC Bay Street 16, AMC _

Movies Theaters Theaters

Typical case

2. Recommended Fix

<recelver androild:name="my.special.receiver”
android:exported=false>

</receiver>

or
<receilver androild:name="my.special.receiver”
androild:exported=true

android:permission="my.own.permission”’>

</receiver>

3. Persistent Messages: Sticky Broadcasts

= Broadcast Intent
— One-to-many message

— Delivered to all components registered to receive
them

= “Sticky” Broadcast Intents are broadcasts that
persist
— Remain accessible after they are delivered
— Re-broadcast to future Receivers

3. Problems with Persistent Messages

= Can leak sensitive program data

= Cannot be restricted to a certain set of
receivers (cannot require a receiver to have a
permission)

= Stays around after it has been sent

— But anyone with BROADCAST _STICKY permission
can remove a sticky Intent you create

3. Example

Sticky broadcasts:

Requests BROADCAST _STICKY
Permission

Sticky broadcast 1

’
/

Victim app

~y

Sticky broadcast 2 Receiver

(expects sticky
broadcast 2)

e EEE S S S S S o o .

Sticky broadcast 3

Newly connected receiver will be unaware of the change

7

3. Recommended Fix

= Use regular broadcasts protected by the
receiver permission instead, if possible

= Don’t put sensitive data in sticky broadcast
messages

4. Insecure Storage

= Can compromise sensitive program data
— Passwords, Location, Contacts, etc.

= SD card

— Files on the SD Card are world-readable

— Files stay even after the application that wrote
them is uninstalled

4. Example: Kindle App

= Saves e-books (.mbp and .prc) in a folder on
the SD card

— Some can be read by other applications (depends
on the DRM)

= Saves covers of books

— Privacy violation

= Folder is retained after uninstallation of Kindle
— Next mobile owner can see all books

7

4. Recommended Fix

= Write to the application’s SQLite database

= Write to the device’s internal storage and
make the file private

(Context.MODE_PRIVATE)

= |f it must be on SD card, encrypt the data
(AND don’t store the key on the SD card!)

5. Insecure Network Communication

" Be careful of leaking sensitive data
through HTTP connections

5. Examples

= Twitter: Tweets are sent in the clear

Yol \ Follow TCP Stream
strearm Content

POST /l/statuses/update.json?status=5g se/m20thirstiers20aTtters20julces20s50c1al%
20hour . &lat=37. HA6&Long=-122. 2587 2 HITPf1.1
Accept-Encoding: gzip

Content-Ler 1q th: i
Host: apl,twitter.com
connection: Keep-Allye

HITP/1l.,1 200 OK

https://freedom-to-tinker.com/blog/dwallach/things-overheard-wifi-my-android-smartphone @

5. Examples

= Facebook: Despite having a fully encrypted
traffic option on the web app, the mobile app
sends everything in the clear

NN % Follow TCP Stream
Stream Content

[11584 bytes missing in capture Tile]file-ak-snc4

/41476 700075 8811 q.jpg", "cell”:null, "other_phone®:null, "contact_email":
ard\u0o40gmail.com”},

{"uid":700719, "first_name": . Llast_name":| pic_square":"https:\/\/fbcdn-
profile-a.akamaihd.net\/hprotile-ak-snc4

\ /41538 700719 - jpg', "cell":null, "other_phone®:null, "contact email":"
\u0040alum. mit.edu”},

5. Recommended Fix

= When using WebViews, connect to HTTPS
when possible

= Don’t send passwords in the clear

" Treat your mobile app as you would a web app

6. SQL Injection

HI, THIS 15 OH, DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEARS STUDENT RECORDS.
Robert'); DROP T HOPE YPURE HAPPY.
IT&EIE Students; -~ 7 er

% { R AND I HOPE
4~ OH. YES. UTTLE “~ YOUVE LEPRNED
; W.f - BOBBY TABLES, L TO SANMIZE YOUR
f
A

WE'RE HAVING SOME

COMPUTER TRovBLE. | N A WAY =)

WE CALL HIM. DATABASE. INPUTS.

= SQLiteDatabase class methods susceptible to general
SQL Injection:
delete
execSQL
rawQuery
update
updateWithNoConflict

6. SQL Injection: Query String Injection

= Unlike typical SQL injection, Query String
Injection allows malicious users to view
unauthorized records, but not to alter the
database

= Query string injection occurs when:
1. Data enters a program from an untrusted source

2. The data is used to dynamically construct a part
of a SQL query string

7

6. Example

invoicesDB.query (

Urili.parse(involices),

columns,

"productCategory = "" +
productCategory + "' and
customerID = '" + customerID + "'",

null,

null,

null,

"t" + sortColumn + "'asc",

null

6. Example

productCategory = “Fax Machines”
customerlD = “12345678"
sortColumn = “price”

select * from 1nvoices
where productCategory = 'Fax Machines' and
customerID = '12345678"

order by 'price' asc

Returns invoice records for ONE customer

6. Example

productCategory = “Fax Machines’ or productCategory =\
customerlD = “12345678"
sortColumn = “\" order by ‘price”

awn»

select * from 1nvoices
where productCategory = ‘Fax Machines’ or
productCategory = "' and customerID =
'12345678" order by '"

order by 'price' asc

Returns invoice records for ALL customers

6. Recommended Fix
Use parameterized queries!!!

invoicesDB.query (

Urili.parse(invoices),

columns,

"productCategory = ? and customerID = ?",
{productCategory, customerID},

null,

null,

""" sortColumn + "'asc", null

7. Overprivileged Applications

= Overprivileged applications — applications that
request more permissions than the app
actually requires

7. Why is this dangerous?

= Violates the principle of least privilege

= Any vulnerability may give the attacker that
privilege
= Users may get accustomed to seeing and

accepting unnecessary permission requests
from third party applications

7. How can this occur?

= Common causes
— Confusing permission names
— Testing artifacts
— Using deputies
— Error propagation through message board advice
— Related methods

7. Example: Using Deputies

/" Camera App

Needs CAMERA
permission

Does not need
CAMERA permission

Takes
Picture

Y Wants Picture

Implicit Intent
Action: IMAGE _CAPTURE

Handles Action:
IMAGE_CAPTURE

— e o o o o o o o EE O o EE e o o Ew e Ew o
o o o EE o o o EE S S O e e =

7. Example: Bad Message Board Advice

Third hit on Google search

3 An sSwers acthve oldest votes

4. Itbroadcasts whenever you connect or disconnect from Wifl, in other words, Wifi State.

0

{3 Youcan do it using the following intent-filters:

- android.net. wifi WIFI_STATE_CHANGED
- action android:name="android.net. wif.STATE_CHANGE
- android.net.wifi.supplicant COIMB b CELAR,

o

finich needs the following permission:
- uses-permission android:name="android.permission ACCESS _WIFI_STATE"

Not true for android.net.wifi.STATE_ CHANGE

http://stackoverflow.com/questions/2676044/broadcast-intent-when-network-state-has-changend @

7. Recommended Fix

= Have Google improve their documentation
= Use tools to identify overprivilege

Empirical Results Analyzing
Applications Built on
GOOGLE ANDROID

Summary of Results

Type # of Vulnerable Apps

Unauthorized Intent Receipt 50%
Intent Spoofing 40%
Persistent Messages: Sticky Broadcasts 6%
Insecure Storage 28%
SQL Injection 17%

Overprivileged Applications 31%

Challenges

= Coding conventions

— Callbacks and reflection are a challenge for
traditional static analysis techniques

" Documentation

— Google provides little documentation, which is
often incomplete or out-of-date

Documentation Analysis

= Android 2.2 documents permission
requirements for only 78 out of 1207 API calls
found by the Berkeley team

— 6 out of 78 are incorrect
— 1 of the documented permissions does not exist

Vulnerability Identification

= Of the 7 vulnerabilities presented:

— 5 vulnerability categories currently can be
identified by Fortify’s SCA tools

— 4 vulnerability categories currently can be
identified by UC Berkeley’s tools

— 6 categories will be integrated into the current
tools

Related Work

= Adrienne Porter Felt, David Wagner, UC
Berkeley ['11] - Overprivilege

= Will Enck, Penn State ['09] — information
leakage through Broadcast Intents

= Jesse Burns ['09] — other common developers’
errors

= Dan Wallach — WiFi leaks

Conclusion

= Android has its own set of security pitfalls

= Static analysis can help developers avoid these
problems

= UC Berkeley and Fortify are working to

incorporate state-of-the-art static analysis into
Fortify’s tools

&

daN>=X0ID

Seven Ways to
Hang Yourself with

Google Android

Yekaterina Tsipenyuk O'Neill Erika Chin
Principal Security Researcher Ph.D. Student at UC Berkeley

