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Introduction to Google Android

= Android architecture
= Security model

= Application breakdown
— Android manifest
— Components
— Inter-component communication




Android Architecture

= Applications
= Application framework (SDK)
= Dalvik virtual machine
— Customized bytecode (.dex files)
= Native libraries

— Graphics, database management, WebKit, etc.
— Accessed through Java interfaces

* Linux kernel

— Device drivers, memory management, etc.
Lower

7




Security Model

= Applications have unique UIDs

— Run as separate processes on separate VMs

— Typically cannot read each other’s data and code
" Linux-style file permissions

= Android permissions protect
— Access to sensitive APIs
— Access to content providers

— Inter- and intra-application communication




Application Breakdown

= Applications are divided into components

= 4 types of components
— Activities
— Services
— Broadcast Receivers
— Content Providers




Android Manifest

Each application contains a manifest

<manifest ...>
<application>
<activity android:name=“.MyActivity”>...</activity>
<receiver android:name="“.MyReceiver”>...</receiver>
</application>

<uses-sdk android:minSdkVersion=%“8" />
<uses—-feature android:name=“android.hardware.CAMERA"” />

<uses-permission
android:name=“android.permission.INTERNET"” />

<uses-permission
android:name=“android.permission.CAMERA” />

<permission android:name="“com.emc.NewPermission”
</manifest>
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Inter-Component Communication

= Uses Intents (messages)

" |ntents can be sent between components

— Used for both intra- and inter-application
communication

— Event notifications (including system events)

Sender p - — Receiver

Intent




Explicit Intents

" Exact recipient is specified

Name: MapActivity

\YETe)

Yel
P App

To: MapActivity

Only the specified destination receives this message

(= 7,




Implicit Intents

= |Left up to the platform to decide where it
should be delivered

Handles Action: VIEW

Map
App

Handles Action: DISPLAYTIME

Implicit Intent Clock
Action: VIEW App




Implicit Intents

Handles Action: VIEW

Handles Action: VIEW

Implicit Intent Browser
Action: VIEW App




Explicit vs. Implicit Intents

Explicit Intent:
Intent 1 = new Intent();

1.setClassName (“some.pkg.name”,
“some.pkg.name.TestDestination”);

Implicit Intent:
Intent 1 = new Intent();

1.setAction(Ymy.special.action”);




Component Protection

= Components can be made accessible to other
applications (exported) or be made private

— Default is private ©
— Converted to public when component is registered

to receive implicit Intents ®

= Components can be protected by permissions
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Component Permissions

App 1

Has RETRIEVE Permission
Retrieves Picture

Requires RETRIEVE
Permission
Displays Picture
Takes Picture

Requires CAMERA
Permission
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Google Android Vulnerabilities

. Unauthorized Intent Receipt
ntent Spoofing
. Persistent Messages: Sticky Broadcasts

nsecure Network Communication
. SQL Injection
. Overprivileged Applications

1
2
3
4. Insecure Storage
5
6
7/




1. Unauthorized Intent Receipt

= Attack: Malicious app intercepts an Intent

= Arises when Intents are implicit (public) and
do not require receiving components to have
strong permissions

= Can leak sensitive program data and/or
change control flow

Intent 1 = new Intent();
1.setAction (“my.special.action”);
[startActivity|sendBroadcast|startService] (1) ;
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1. Example
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Showtime
Search

Implicit Intent
Action:
willUpdateShowtimes

Handles Actions:
willUpdateShowtimes,
showtimesNolLocationError

Results Ul




100 B 4 M@ 10:49em

Showtimes
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Movies TV Celebrities Showtimes

Thursday, June 23

Current Location

{UQ Bad Teacher (2011)
" Rated R, 1 hr 32 mins, 6.3/10

Showtimes from Century Richmond
Hilltop 16, Century San Francisco Centre

9 and XD, and 1 other...

Cars 2(2011)
=+ Rated G, 1 hr 53 mins, 6.9/10

Theaters




1. Example
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1. Example

Handles Action:
willUpdateShowtimes,
showtimesNolLocationError

Malicious
Receiver

Showtime
Search

Implicit Intent
Action:
willUpdateShowtimes

/

Sending Implicit Intents makes communication public
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1. Recommended Fix

Intent 1 = new Intent();

1.setClassName (“some.pkg.name”,
“some.pkg.name.TestDestination”);

or

Intent 1 = new Intent();

1.setAction (“my.special.action”);
sendBroadcast (1, “my.special.permission”);
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2. Intent Spoofing

= Attack: Malicious app sends an Intent,
resulting in data injection/state change

= Arises when components are public and do
not require senders to have strong
permissions

<recelver androild:name="my.speclal.receiver”>
<lntent-filter>

<action android:name=“my.intent.action” />
</intent-filter>
</receiver>
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2. Example

Malicious
Component

Action:
showtimesNolLocationError

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNolLocationError

Results Ul
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FE—

Showtimes - Showtimes

O a H B O a

Movies TV Celebrities Showtimes News Movies TV Celebrities Showtimes

Thursday, June 23 Thursday, June 23

Current Location Current Location

New This Week Please specify a location

(U@ Bad Teacher (2011) No showtimes were found for the
* & Rated R, 1 hr 32 mins, 6.3/10 selected date and location.

Showtimes from Century Richmond

Hilltop 16, Century San Francisco Centre »
9 and XD, and 1 other...

28 Cars 2(2011)
5 Rated G, 1 hr 53 mins, 6.9/10

Showtimes from AMC Bay Street 16, AMC _

Movies Theaters Theaters

Typical case




2. Recommended Fix

<recelver androild:name="my.special.receiver”
android:exported=false>

</receiver>

or
<receilver androild:name="my.special.receiver”
androild:exported=true

android:permission="my.own.permission”’>

</receiver>




3. Persistent Messages: Sticky Broadcasts

= Broadcast Intent
— One-to-many message

— Delivered to all components registered to receive
them

= “Sticky” Broadcast Intents are broadcasts that
persist
— Remain accessible after they are delivered
— Re-broadcast to future Receivers




3. Problems with Persistent Messages

= Can leak sensitive program data

= Cannot be restricted to a certain set of
receivers (cannot require a receiver to have a
permission)

= Stays around after it has been sent

— But anyone with BROADCAST _STICKY permission
can remove a sticky Intent you create




3. Example

Sticky broadcasts:

Requests BROADCAST _STICKY
Permission

Sticky broadcast 1

’
/

Victim app

~y

Sticky broadcast 2 Receiver

(expects sticky
broadcast 2)

e EEE S S S S S o o .

Sticky broadcast 3

Newly connected receiver will be unaware of the change
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3. Recommended Fix

= Use regular broadcasts protected by the
receiver permission instead, if possible

= Don’t put sensitive data in sticky broadcast
messages




4. Insecure Storage

= Can compromise sensitive program data
— Passwords, Location, Contacts, etc.

= SD card

— Files on the SD Card are world-readable

— Files stay even after the application that wrote
them is uninstalled




4. Example: Kindle App

= Saves e-books (.mbp and .prc) in a folder on
the SD card

— Some can be read by other applications (depends
on the DRM)

= Saves covers of books

— Privacy violation

= Folder is retained after uninstallation of Kindle
— Next mobile owner can see all books
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4. Recommended Fix

= Write to the application’s SQLite database

= Write to the device’s internal storage and
make the file private

(Context.MODE_PRIVATE)

= |f it must be on SD card, encrypt the data
(AND don’t store the key on the SD card!)




5. Insecure Network Communication

" Be careful of leaking sensitive data
through HTTP connections




5. Examples

= Twitter: Tweets are sent in the clear

Yol \ Follow TCP Stream
strearm Content

POST /l/statuses/update.json?status=5g se/m20thirstiers20aTtters20julces20s50c1al%
20hour . &lat=37. HA6&Long=-122. 2587 2 HITPf1.1
Accept-Encoding: gzip

Content-Ler 1q th: i
Host: apl,twitter.com
connection: Keep-Allye

HITP/1l.,1 200 OK

https://freedom-to-tinker.com/blog/dwallach/things-overheard-wifi-my-android-smartphone @




5. Examples

= Facebook: Despite having a fully encrypted
traffic option on the web app, the mobile app
sends everything in the clear

NN %  Follow TCP Stream
Stream Content

[11584 bytes missing in capture Tile]file-ak-snc4

/41476 700075 8811 q.jpg", "cell”:null, "other_phone®:null, "contact_email":
ard\u0o40gmail.com”},

{"uid":700719, "first_name": . Llast_name":| pic_square":"https:\/\/fbcdn-
profile-a.akamaihd.net\/hprotile-ak-snc4

\ /41538 700719 - jpg', "cell":null, "other_phone®:null, "contact email":"
\u0040alum. mit.edu”},




5. Recommended Fix

= When using WebViews, connect to HTTPS
when possible

= Don’t send passwords in the clear

" Treat your mobile app as you would a web app




6. SQL Injection

HI, THIS 15 OH, DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEARS STUDENT RECORDS.
Robert'); DROP T HOPE YPURE HAPPY.
IT&EIE Students; -~ 7 er

% { R AND I HOPE
4~ OH. YES. UTTLE “~ YOUVE LEPRNED
; W.f - BOBBY TABLES, L TO SANMIZE YOUR
f
A

WE'RE HAVING SOME

COMPUTER TRovBLE. | N A WAY = )

WE CALL HIM. DATABASE. INPUTS.

= SQLiteDatabase class methods susceptible to general
SQL Injection:
delete
execSQL
rawQuery
update
updateWithNoConflict




6. SQL Injection: Query String Injection

= Unlike typical SQL injection, Query String
Injection allows malicious users to view
unauthorized records, but not to alter the
database

= Query string injection occurs when:
1. Data enters a program from an untrusted source

2. The data is used to dynamically construct a part
of a SQL query string
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6. Example

invoicesDB.query (

Urili.parse(involices),

columns,

"productCategory = "" +
productCategory + "' and
customerID = '" + customerID + "'",

null,

null,

null,

"t" + sortColumn + "'asc",

null




6. Example

productCategory = “Fax Machines”
customerlD = “12345678"
sortColumn = “price”

select * from 1nvoices
where productCategory = 'Fax Machines' and
customerID = '12345678"

order by 'price' asc

Returns invoice records for ONE customer




6. Example

productCategory = “Fax Machines’ or productCategory =\
customerlD = “12345678"
sortColumn = “\" order by ‘price”

awn»

select * from 1nvoices
where productCategory = ‘Fax Machines’ or
productCategory = "' and customerID =
'12345678" order by '"

order by 'price' asc

Returns invoice records for ALL customers




6. Recommended Fix
Use parameterized queries!!!

invoicesDB.query (

Urili.parse(invoices),

columns,

"productCategory = ? and customerID = ?",
{productCategory, customerID},

null,

null,

""" sortColumn + "'asc", null




7. Overprivileged Applications

= Overprivileged applications — applications that
request more permissions than the app
actually requires




7. Why is this dangerous?

= Violates the principle of least privilege

= Any vulnerability may give the attacker that
privilege
= Users may get accustomed to seeing and

accepting unnecessary permission requests
from third party applications




7. How can this occur?

= Common causes
— Confusing permission names
— Testing artifacts
— Using deputies
— Error propagation through message board advice
— Related methods




7. Example: Using Deputies

/" Camera App

Needs CAMERA
permission

Does not need
CAMERA permission

Takes
Picture

Y Wants Picture

Implicit Intent
Action: IMAGE _CAPTURE

Handles Action:
IMAGE_CAPTURE

— e o o o o o o o EE O o EE e o o Ew e Ew o
o o o EE o o o EE S S O e e =




7. Example: Bad Message Board Advice

Third hit on Google search

3 An sSwers acthve oldest votes

4. Itbroadcasts whenever you connect or disconnect from Wifl, in other words, Wifi State.

0

{3 Youcan do it using the following intent-filters:

- android.net. wifi WIFI_STATE_CHANGED
- action android:name="android.net. wif.STATE_CHANGE
- android.net.wifi.supplicant COIMB b CELAR,

o

finich needs the following permission:
- uses-permission android:name="android.permission ACCESS _WIFI_STATE"

Not true for android.net.wifi.STATE_ CHANGE

http://stackoverflow.com/questions/2676044/broadcast-intent-when-network-state-has-changend @



7. Recommended Fix

= Have Google improve their documentation
= Use tools to identify overprivilege




Empirical Results Analyzing
Applications Built on
GOOGLE ANDROID




Summary of Results

Type # of Vulnerable Apps

Unauthorized Intent Receipt 50%
Intent Spoofing 40%
Persistent Messages: Sticky Broadcasts 6%
Insecure Storage 28%
SQL Injection 17%

Overprivileged Applications 31%




Challenges

= Coding conventions

— Callbacks and reflection are a challenge for
traditional static analysis techniques

" Documentation

— Google provides little documentation, which is
often incomplete or out-of-date




Documentation Analysis

= Android 2.2 documents permission
requirements for only 78 out of 1207 API calls
found by the Berkeley team

— 6 out of 78 are incorrect
— 1 of the documented permissions does not exist




Vulnerability Identification

= Of the 7 vulnerabilities presented:

— 5 vulnerability categories currently can be
identified by Fortify’s SCA tools

— 4 vulnerability categories currently can be
identified by UC Berkeley’s tools

— 6 categories will be integrated into the current
tools




Related Work

= Adrienne Porter Felt, David Wagner, UC
Berkeley ['11] - Overprivilege

= Will Enck, Penn State ['09] — information
leakage through Broadcast Intents

= Jesse Burns ['09] — other common developers’
errors

= Dan Wallach — WiFi leaks




Conclusion

= Android has its own set of security pitfalls

= Static analysis can help developers avoid these
problems

= UC Berkeley and Fortify are working to

incorporate state-of-the-art static analysis into
Fortify’s tools
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