
Seven Ways to
Hang Yourself with

Google Android
Yekaterina Tsipenyuk O'Neil

Principal Security Researcher

Erika Chin

Ph.D. Student at UC Berkeley

 Founding Member of the Security Research
Group at Fortify (now an HP Company)

 Code audits, identifying insecure coding
patterns, and providing security content for
Fortify's software security products

 B.S. and M.S. in CS from UC San Diego

2

 Ph.D. student in Computer Science at UC
Berkeley (Security research group)

 B.S. from University of Virginia
 Research interest in improving mobile phone

security
 Recently presented at MobiSys 2011 on

vulnerabilities stemming from inter-
application communication in Android

 Introduction to Google Android
 Seven Ways to Hang Yourself
 Results of Empirical Analysis
 Conclusion

4

GOOGLE ANDROID
Introduction to

 Android architecture
 Security model
 Application breakdown

– Android manifest
– Components
– Inter-component communication

6

 Applications
 Application framework (SDK)
 Dalvik virtual machine

– Customized bytecode (.dex files)
 Native libraries

– Graphics, database management, WebKit, etc.
– Accessed through Java interfaces

 Linux kernel
– Device drivers, memory management, etc.

7

Lower

Higher

 Applications have unique UIDs
– Run as separate processes on separate VMs
– Typically cannot read each other’s data and code

 Linux-style file permissions
 Android permissions protect

– Access to sensitive APIs
– Access to content providers
– Inter- and intra-application communication

8

 Applications are divided into components
 4 types of components

– Activities
– Services
– Broadcast Receivers
– Content Providers

Each application contains a manifest

10

<manifest ...>
<application>
<activity android:name=“.MyActivity”>...</activity>
<receiver android:name=“.MyReceiver”>...</receiver>

</application>

<uses-sdk android:minSdkVersion=“8” />
<uses-feature android:name=“android.hardware.CAMERA”/>

<uses-permission
android:name=“android.permission.INTERNET” />

<uses-permission
android:name=“android.permission.CAMERA” />

<permission android:name=“com.emc.NewPermission” ...>
</manifest>

 Uses Intents (messages)
 Intents can be sent between components

– Used for both intra- and inter-application
communication

– Event notifications (including system events)

11

Sender Receiver

Intent

 Exact recipient is specified

12

Yelp Map
App

Name: MapActivity

To: MapActivity

Only the specified destination receives this message

 Left up to the platform to decide where it
should be delivered

13

Yelp

Clock
App

Map
App

Handles Action: VIEW

Implicit Intent
Action: VIEW

Handles Action: DISPLAYTIME

14

Yelp

Browser
App

Map
App

Handles Action: VIEW

Implicit Intent
Action: VIEW

Handles Action: VIEW

Explicit Intent:
Intent i = new Intent();

i.setClassName(“some.pkg.name”,
“some.pkg.name.TestDestination”);

Implicit Intent:
Intent i = new Intent();

i.setAction(“my.special.action”);

 Components can be made accessible to other
applications (exported) or be made private

– Default is private 
– Converted to public when component is registered

to receive implicit Intents 

 Components can be protected by permissions

16

17

Displays Picture

Retrieves Picture

Requires RETRIEVE
Permission

App 1

Has RETRIEVE Permission

App 2

Takes Picture

Requires CAMERA
Permission

GOOGLE ANDROID
Seven Ways to Hang Yourself with

1. Unauthorized Intent Receipt
2. Intent Spoofing
3. Persistent Messages: Sticky Broadcasts
4. Insecure Storage
5. Insecure Network Communication
6. SQL Injection
7. Overprivileged Applications

 Attack: Malicious app intercepts an Intent
 Arises when Intents are implicit (public) and

do not require receiving components to have
strong permissions

 Can leak sensitive program data and/or
change control flow

Intent i = new Intent();
i.setAction(“my.special.action”);
[startActivity|sendBroadcast|startService](i);

21

Showtime
Search

Results UI

IMDb App

Handles Actions:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action:
willUpdateShowtimes

22

23

Showtime
Search

Results UI

IMDb App

Handles Actions:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action:
willUpdateShowtimes

24

Showtime
Search

Malicious
Receiver

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action:
willUpdateShowtimes

Eavesdropping App

Sending Implicit Intents makes communication public

Intent i = new Intent();

i.setClassName(“some.pkg.name”,
“some.pkg.name.TestDestination”);

or

Intent i = new Intent();

i.setAction(“my.special.action”);
sendBroadcast(i, “my.special.permission”);

 Attack: Malicious app sends an Intent,
resulting in data injection/state change

 Arises when components are public and do
not require senders to have strong
permissions

<receiver android:name=“my.special.receiver”>
<intent-filter>

<action android:name=“my.intent.action” />
</intent-filter>

</receiver>

27

Malicious
Component

Results UI

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Action:
showtimesNoLocationError

Malicious
Injection App

Receiving Implicit Intents makes the component public

28Typical case

Attack case

<receiver android:name=“my.special.receiver”
android:exported=false>

...
</receiver>

or

<receiver android:name=“my.special.receiver”
android:exported=true
android:permission=“my.own.permission”>

...
</receiver>

 Broadcast Intent
– One-to-many message
– Delivered to all components registered to receive

them

 “Sticky” Broadcast Intents are broadcasts that
persist
– Remain accessible after they are delivered
– Re-broadcast to future Receivers

 Can leak sensitive program data
 Cannot be restricted to a certain set of

receivers (cannot require a receiver to have a
permission)

 Stays around after it has been sent
– But anyone with BROADCAST_STICKY permission

can remove a sticky Intent you create

32

Requests BROADCAST_STICKY
Permission

Sticky broadcasts: Malicious App

Newly connected receiver will be unaware of the change

Sticky broadcast 1

Sticky broadcast 2

Sticky broadcast 3

Victim app

?

Receiver
(expects sticky
broadcast 2)

 Use regular broadcasts protected by the
receiver permission instead, if possible

 Don’t put sensitive data in sticky broadcast
messages

 Can compromise sensitive program data
– Passwords, Location, Contacts, etc.

 SD card
– Files on the SD Card are world-readable
– Files stay even after the application that wrote

them is uninstalled

 Saves e-books (.mbp and .prc) in a folder on
the SD card
– Some can be read by other applications (depends

on the DRM)

 Saves covers of books
– Privacy violation

 Folder is retained after uninstallation of Kindle
– Next mobile owner can see all books

 Write to the application’s SQLite database
 Write to the device’s internal storage and

make the file private
(Context.MODE_PRIVATE)

 If it must be on SD card, encrypt the data
(AND don’t store the key on the SD card!)

 Be careful of leaking sensitive data
through HTTP connections

 Twitter: Tweets are sent in the clear

https://freedom-to-tinker.com/blog/dwallach/things-overheard-wifi-my-android-smartphone

 Facebook: Despite having a fully encrypted
traffic option on the web app, the mobile app
sends everything in the clear

 When using WebViews, connect to HTTPS
when possible

 Don’t send passwords in the clear
 Treat your mobile app as you would a web app

 SQLiteDatabase class methods susceptible to general
SQL Injection:
– delete
– execSQL
– rawQuery
– update
– updateWithNoConflict

 Unlike typical SQL injection, Query String
Injection allows malicious users to view
unauthorized records, but not to alter the
database

 Query string injection occurs when:
1. Data enters a program from an untrusted source
2. The data is used to dynamically construct a part

of a SQL query string

c = invoicesDB.query(
Uri.parse(invoices),
columns,
"productCategory = '" +

productCategory + "' and
customerID = '" + customerID + "'",

null,
null,
null,
"'" + sortColumn + "'asc",
null

);

select * from invoices

where productCategory = 'Fax Machines' and

customerID = '12345678'

order by 'price' asc

productCategory = “Fax Machines”
customerID = “12345678”
sortColumn = “price”

Returns invoice records for ONE customer

select * from invoices

where productCategory = ‘Fax Machines’ or

productCategory = "' and customerID =

'12345678' order by '"

order by 'price' asc

productCategory = “Fax Machines’ or productCategory = \ “”
customerID = “12345678”
sortColumn = “\” order by ‘price”

Returns invoice records for ALL customers

c = invoicesDB.query(

Uri.parse(invoices),

columns,

"productCategory = ? and customerID = ?",

{productCategory, customerID},

null,

null,

"'" sortColumn + "'asc", null

);

Use parameterized queries!!!

 Overprivileged applications – applications that
request more permissions than the app
actually requires

 Violates the principle of least privilege
 Any vulnerability may give the attacker that

privilege
 Users may get accustomed to seeing and

accepting unnecessary permission requests
from third party applications

 Common causes
– Confusing permission names
– Testing artifacts
– Using deputies
– Error propagation through message board advice
– Related methods

50

Wants Picture Takes
Picture

App 1

Handles Action:
IMAGE_CAPTURE

Implicit Intent
Action: IMAGE_CAPTURE

Camera App

Does not need
CAMERA permission

Needs CAMERA
permission

http://stackoverflow.com/questions/2676044/broadcast-intent-when-network-state-has-changend

Not true for android.net.wifi.STATE_CHANGE

Third hit on Google search

 Have Google improve their documentation
 Use tools to identify overprivilege

GOOGLE ANDROID

Empirical Results Analyzing
Applications Built on

of Vulnerable AppsType

50%Unauthorized Intent Receipt

40%Intent Spoofing

6%Persistent Messages: Sticky Broadcasts

28%Insecure Storage

17%SQL Injection

31%Overprivileged Applications

 Coding conventions
– Callbacks and reflection are a challenge for

traditional static analysis techniques

 Documentation
– Google provides little documentation, which is

often incomplete or out-of-date

 Android 2.2 documents permission
requirements for only 78 out of 1207 API calls
found by the Berkeley team
– 6 out of 78 are incorrect
– 1 of the documented permissions does not exist

 Of the 7 vulnerabilities presented:
– 5 vulnerability categories currently can be

identified by Fortify’s SCA tools
– 4 vulnerability categories currently can be

identified by UC Berkeley’s tools
– 6 categories will be integrated into the current

tools

 Adrienne Porter Felt, David Wagner, UC
Berkeley [’11] - Overprivilege

 Will Enck, Penn State [’09] – information
leakage through Broadcast Intents

 Jesse Burns [’09] – other common developers’
errors

 Dan Wallach – WiFi leaks

 Android has its own set of security pitfalls
 Static analysis can help developers avoid these

problems
 UC Berkeley and Fortify are working to

incorporate state-of-the-art static analysis into
Fortify’s tools

Seven Ways to
Hang Yourself with

Google Android
Yekaterina Tsipenyuk O'Neil

Principal Security Researcher

Erika Chin

Ph.D. Student at UC Berkeley

