
Seven Ways to
Hang Yourself with

Google Android
Yekaterina Tsipenyuk O'Neil

Principal Security Researcher

Erika Chin

Ph.D. Student at UC Berkeley

 Founding Member of the Security Research
Group at Fortify (now an HP Company)

 Code audits, identifying insecure coding
patterns, and providing security content for
Fortify's software security products

 B.S. and M.S. in CS from UC San Diego

2

 Ph.D. student in Computer Science at UC
Berkeley (Security research group)

 B.S. from University of Virginia
 Research interest in improving mobile phone

security
 Recently presented at MobiSys 2011 on

vulnerabilities stemming from inter-
application communication in Android

 Introduction to Google Android
 Seven Ways to Hang Yourself
 Results of Empirical Analysis
 Conclusion

4

GOOGLE ANDROID
Introduction to

 Android architecture
 Security model
 Application breakdown

– Android manifest
– Components
– Inter-component communication

6

 Applications
 Application framework (SDK)
 Dalvik virtual machine

– Customized bytecode (.dex files)
 Native libraries

– Graphics, database management, WebKit, etc.
– Accessed through Java interfaces

 Linux kernel
– Device drivers, memory management, etc.

7

Lower

Higher

 Applications have unique UIDs
– Run as separate processes on separate VMs
– Typically cannot read each other’s data and code

 Linux-style file permissions
 Android permissions protect

– Access to sensitive APIs
– Access to content providers
– Inter- and intra-application communication

8

 Applications are divided into components
 4 types of components

– Activities
– Services
– Broadcast Receivers
– Content Providers

Each application contains a manifest

10

<manifest ...>
<application>
<activity android:name=“.MyActivity”>...</activity>
<receiver android:name=“.MyReceiver”>...</receiver>

</application>

<uses-sdk android:minSdkVersion=“8” />
<uses-feature android:name=“android.hardware.CAMERA”/>

<uses-permission
android:name=“android.permission.INTERNET” />

<uses-permission
android:name=“android.permission.CAMERA” />

<permission android:name=“com.emc.NewPermission” ...>
</manifest>

 Uses Intents (messages)
 Intents can be sent between components

– Used for both intra- and inter-application
communication

– Event notifications (including system events)

11

Sender Receiver

Intent

 Exact recipient is specified

12

Yelp Map
App

Name: MapActivity

To: MapActivity

Only the specified destination receives this message

 Left up to the platform to decide where it
should be delivered

13

Yelp

Clock
App

Map
App

Handles Action: VIEW

Implicit Intent
Action: VIEW

Handles Action: DISPLAYTIME

14

Yelp

Browser
App

Map
App

Handles Action: VIEW

Implicit Intent
Action: VIEW

Handles Action: VIEW

Explicit Intent:
Intent i = new Intent();

i.setClassName(“some.pkg.name”,
“some.pkg.name.TestDestination”);

Implicit Intent:
Intent i = new Intent();

i.setAction(“my.special.action”);

 Components can be made accessible to other
applications (exported) or be made private

– Default is private
– Converted to public when component is registered

to receive implicit Intents

 Components can be protected by permissions

16

17

Displays Picture

Retrieves Picture

Requires RETRIEVE
Permission

App 1

Has RETRIEVE Permission

App 2

Takes Picture

Requires CAMERA
Permission

GOOGLE ANDROID
Seven Ways to Hang Yourself with

1. Unauthorized Intent Receipt
2. Intent Spoofing
3. Persistent Messages: Sticky Broadcasts
4. Insecure Storage
5. Insecure Network Communication
6. SQL Injection
7. Overprivileged Applications

 Attack: Malicious app intercepts an Intent
 Arises when Intents are implicit (public) and

do not require receiving components to have
strong permissions

 Can leak sensitive program data and/or
change control flow

Intent i = new Intent();
i.setAction(“my.special.action”);
[startActivity|sendBroadcast|startService](i);

21

Showtime
Search

Results UI

IMDb App

Handles Actions:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action:
willUpdateShowtimes

22

23

Showtime
Search

Results UI

IMDb App

Handles Actions:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action:
willUpdateShowtimes

24

Showtime
Search

Malicious
Receiver

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action:
willUpdateShowtimes

Eavesdropping App

Sending Implicit Intents makes communication public

Intent i = new Intent();

i.setClassName(“some.pkg.name”,
“some.pkg.name.TestDestination”);

or

Intent i = new Intent();

i.setAction(“my.special.action”);
sendBroadcast(i, “my.special.permission”);

 Attack: Malicious app sends an Intent,
resulting in data injection/state change

 Arises when components are public and do
not require senders to have strong
permissions

<receiver android:name=“my.special.receiver”>
<intent-filter>

<action android:name=“my.intent.action” />
</intent-filter>

</receiver>

27

Malicious
Component

Results UI

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Action:
showtimesNoLocationError

Malicious
Injection App

Receiving Implicit Intents makes the component public

28Typical case

Attack case

<receiver android:name=“my.special.receiver”
android:exported=false>

...
</receiver>

or

<receiver android:name=“my.special.receiver”
android:exported=true
android:permission=“my.own.permission”>

...
</receiver>

 Broadcast Intent
– One-to-many message
– Delivered to all components registered to receive

them

 “Sticky” Broadcast Intents are broadcasts that
persist
– Remain accessible after they are delivered
– Re-broadcast to future Receivers

 Can leak sensitive program data
 Cannot be restricted to a certain set of

receivers (cannot require a receiver to have a
permission)

 Stays around after it has been sent
– But anyone with BROADCAST_STICKY permission

can remove a sticky Intent you create

32

Requests BROADCAST_STICKY
Permission

Sticky broadcasts: Malicious App

Newly connected receiver will be unaware of the change

Sticky broadcast 1

Sticky broadcast 2

Sticky broadcast 3

Victim app

?

Receiver
(expects sticky
broadcast 2)

 Use regular broadcasts protected by the
receiver permission instead, if possible

 Don’t put sensitive data in sticky broadcast
messages

 Can compromise sensitive program data
– Passwords, Location, Contacts, etc.

 SD card
– Files on the SD Card are world-readable
– Files stay even after the application that wrote

them is uninstalled

 Saves e-books (.mbp and .prc) in a folder on
the SD card
– Some can be read by other applications (depends

on the DRM)

 Saves covers of books
– Privacy violation

 Folder is retained after uninstallation of Kindle
– Next mobile owner can see all books

 Write to the application’s SQLite database
 Write to the device’s internal storage and

make the file private
(Context.MODE_PRIVATE)

 If it must be on SD card, encrypt the data
(AND don’t store the key on the SD card!)

 Be careful of leaking sensitive data
through HTTP connections

 Twitter: Tweets are sent in the clear

https://freedom-to-tinker.com/blog/dwallach/things-overheard-wifi-my-android-smartphone

 Facebook: Despite having a fully encrypted
traffic option on the web app, the mobile app
sends everything in the clear

 When using WebViews, connect to HTTPS
when possible

 Don’t send passwords in the clear
 Treat your mobile app as you would a web app

 SQLiteDatabase class methods susceptible to general
SQL Injection:
– delete
– execSQL
– rawQuery
– update
– updateWithNoConflict

 Unlike typical SQL injection, Query String
Injection allows malicious users to view
unauthorized records, but not to alter the
database

 Query string injection occurs when:
1. Data enters a program from an untrusted source
2. The data is used to dynamically construct a part

of a SQL query string

c = invoicesDB.query(
Uri.parse(invoices),
columns,
"productCategory = '" +

productCategory + "' and
customerID = '" + customerID + "'",

null,
null,
null,
"'" + sortColumn + "'asc",
null

);

select * from invoices

where productCategory = 'Fax Machines' and

customerID = '12345678'

order by 'price' asc

productCategory = “Fax Machines”
customerID = “12345678”
sortColumn = “price”

Returns invoice records for ONE customer

select * from invoices

where productCategory = ‘Fax Machines’ or

productCategory = "' and customerID =

'12345678' order by '"

order by 'price' asc

productCategory = “Fax Machines’ or productCategory = \ “”
customerID = “12345678”
sortColumn = “\” order by ‘price”

Returns invoice records for ALL customers

c = invoicesDB.query(

Uri.parse(invoices),

columns,

"productCategory = ? and customerID = ?",

{productCategory, customerID},

null,

null,

"'" sortColumn + "'asc", null

);

Use parameterized queries!!!

 Overprivileged applications – applications that
request more permissions than the app
actually requires

 Violates the principle of least privilege
 Any vulnerability may give the attacker that

privilege
 Users may get accustomed to seeing and

accepting unnecessary permission requests
from third party applications

 Common causes
– Confusing permission names
– Testing artifacts
– Using deputies
– Error propagation through message board advice
– Related methods

50

Wants Picture Takes
Picture

App 1

Handles Action:
IMAGE_CAPTURE

Implicit Intent
Action: IMAGE_CAPTURE

Camera App

Does not need
CAMERA permission

Needs CAMERA
permission

http://stackoverflow.com/questions/2676044/broadcast-intent-when-network-state-has-changend

Not true for android.net.wifi.STATE_CHANGE

Third hit on Google search

 Have Google improve their documentation
 Use tools to identify overprivilege

GOOGLE ANDROID

Empirical Results Analyzing
Applications Built on

of Vulnerable AppsType

50%Unauthorized Intent Receipt

40%Intent Spoofing

6%Persistent Messages: Sticky Broadcasts

28%Insecure Storage

17%SQL Injection

31%Overprivileged Applications

 Coding conventions
– Callbacks and reflection are a challenge for

traditional static analysis techniques

 Documentation
– Google provides little documentation, which is

often incomplete or out-of-date

 Android 2.2 documents permission
requirements for only 78 out of 1207 API calls
found by the Berkeley team
– 6 out of 78 are incorrect
– 1 of the documented permissions does not exist

 Of the 7 vulnerabilities presented:
– 5 vulnerability categories currently can be

identified by Fortify’s SCA tools
– 4 vulnerability categories currently can be

identified by UC Berkeley’s tools
– 6 categories will be integrated into the current

tools

 Adrienne Porter Felt, David Wagner, UC
Berkeley [’11] - Overprivilege

 Will Enck, Penn State [’09] – information
leakage through Broadcast Intents

 Jesse Burns [’09] – other common developers’
errors

 Dan Wallach – WiFi leaks

 Android has its own set of security pitfalls
 Static analysis can help developers avoid these

problems
 UC Berkeley and Fortify are working to

incorporate state-of-the-art static analysis into
Fortify’s tools

Seven Ways to
Hang Yourself with

Google Android
Yekaterina Tsipenyuk O'Neil

Principal Security Researcher

Erika Chin

Ph.D. Student at UC Berkeley

