
Report

Cyber risk
report 2013

Table of contents

3	 Introduction

3	 	 About HP Security Research

3	 	 Our data

4	 Key findings

6	 Further observations/ Security headlines—security by numbers

7	 Mobile—malware, exploits, and vulnerabilities

7	 	 Mobile malware—or is it?

11	 	 Mobile vulnerabilities and exploits

11	 	 Security pitfalls of hybrid mobile development platforms

17	 Vulnerabilities—the state of play

17	 	 Vulnerabilities, proofs of concept, and exploits

19	 	 The numbers

24	 Software security

27	 	 Open source case studies

29	 Java every-days

31	 	 Vulnerability statistics 2011–2013

33	 	 Vulnerability classes

35	 	 Top seven vulnerability classes in the Java architecture

37	 	 Threat landscape

39	 South Korean case study

46	 Conclusions

Report | HP 2013 cyber risk report

3

Report | HP 2013 cyber risk report

Introduction

Welcome to the HP Security Research Cyber Risk Report 2014.
In this report we provide a broad view of the vulnerability and
threat landscape, ranging from industry-wide data down to a
focused look at different technologies, including open source,
web, and mobile. The goal of this report is to provide security
information that can be used to understand the vulnerability
landscape and best deploy resources to minimize security risk.

With the cost of cyber crime continuing to rise at a worrying rate1 and several organizations
calling attention to the observed increase in the use of exploits in the wild,2 the report this
year focuses on specific areas of the attack surface; the technologies that define it, and
vulnerabilities and actors that drive how it is abused.

The attack surface is a useful term to describe the sum of areas that are vulnerable to
compromise by attackers, including technologies, people, and processes. While classically used
to describe software, in this report we refer to the attack surface in a more holistic manner.
What factors comprised the attack surface of an organization in 2013? The answer to that
question is integral to understanding the threat landscape, prioritizing the risks that face an
organization, and deciding on the appropriate security investments with which to respond.

To this end, the report takes a close look at Java’s contribution to the attack surface, summarizing
the results of studies into the security concerns plaguing mobile and open source software. We
use the cyber attacks against South Korea in 2013 as a case study to illuminate security best
practices in the current threat landscape. And, most importantly, we analyze the implications of
these findings on organizations and provide recommendations for how to be more secure.

It’s important to remember that security isn’t a box that can be checked—it’s an ongoing
process of gathering and sharing intelligence, responding to changing technology and
conditions in the wild, and balancing security measures against functionality. It is also simply
not possible to reduce the attack surface to zero without sacrificing functionality necessary to
operate the organization. However, with the right information and advice, organizations can
respond appropriately, mitigate risks, and reduce their attack surface significantly.

About HP Security Research

Actionable security intelligence is critical to protecting organizations from the rising tide of
security threats. HP Security Research (HPSR) leverages innovative research in multiple focus
areas to deliver actionable security intelligence across the portfolio of HP security products,
including HP ArcSight, HP Fortify, and HP TippingPoint.

Security research publications and regular threat briefings complement the intelligence
delivered through HP products and provide insight into the present and future security threats
facing organizations. HPSR brings together data and research to produce a detailed picture of
both sides of the security coin—the state of the vulnerabilities comprising the attack surface,
and, on the flip side, the ways adversaries exploit those vulnerabilities to compromise victims.

Our data

To provide a broad perspective on vulnerabilities and the nature of the attack surface, the
report draws on the following sources:

•	HP Zero Day Initiative (ZDI)

•	HP Fortify on Demand security assessments (static and dynamic)

•	HP Fortify Software Security Research

•	ReversingLabs

•	National Vulnerability Database (NVD)

1 �hpenterprisesecurity.com/ponemon-2013-cost-
of-cyber-crime-study-reports

2 �f-secure.com/static/doc/labs_global/Research/
Threat_Report_H1_2013.pdf

http://www.hpenterprisesecurity.com/ponemon-2013-cost-of-cyber-crime-study-reports
http://www.hpenterprisesecurity.com/ponemon-2013-cost-of-cyber-crime-study-reports
http://www.f-secure.com/static/doc/labs_global/Research/Threat_Report_H1_2013.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Threat_Report_H1_2013.pdf

4

Key findings

Based on our analysis of the data examined, we offer these key findings:

Research gains attention, but vulnerability disclosures stabilize and decrease in severity3
While vulnerability research continued to gain attention, the total number of publicly disclosed
vulnerabilities in 2013 was stable and the number of high-severity vulnerabilities decreased
for the fourth consecutive year. The number of vulnerabilities classified as “high severity” as
reported by NVD has declined since 2010. This finding seems to be at odds with the amount
of interest we’ve seen in the area of vulnerability research. Is this a good indication of the
improving awareness of security in software development or does this indicate a more
nefarious trend—the increased price of vulnerabilities on the black market for APTs resulting in
less public disclosures? We discuss the implications in Vulnerabilities—the state of play.

80% of applications contain vulnerabilities exposed by incorrect configuration
While we often hear about vulnerabilities that arise due to bugs in an application’s code,
assessments performed by HP Fortify on Demand of 2200 applications using both static and
dynamic analysis found that many vulnerabilities lie outside the application’s source code. Many
vulnerabilities were related to server misconfiguration, improper file settings, sample content,
outdated software versions, and other items related to insecure deployment. Eliminating bugs
and the resultant vulnerabilities from code won’t fix this—even perfectly coded software can
be dangerously vulnerable when misconfigured. Don’t overlook this security gap. Dedicate
resources to auditing software for misconfiguration as well as for more expected forms of
vulnerability. See our Software security section for the full details.

Differing definitions of “malware” make measuring mobile malware risk extremely difficult
Our examination of over 500,000 apps for the Android platform turned up some surprising results,
including major discrepancies between how Google™ and different antivirus companies judge the
behavior and intent of mobile apps. Limiting the number of apps available within an organization,
monitoring approved apps, and thoroughly vetting EULAs are the absolute baseline for responsible
defense. We look at the top threats uncovered by our analysis, discuss the discrepancies identified,
and make recommendations in Mobile—vulnerabilities, exploits, and malware.

The attack surface allows for multiple avenues for compromise
As we discovered in the course of analysis on the South Korea targeted attacks, even though
the malware involved was not that sophisticated, it was good enough to compromise the
networks of several organizations and deliver a damaging payload that caused malicious
damage and significant interruptions to normal function. Organizations should understand that
there isn’t a single path to take to protect vital business assets from threats. We explore this
finding in South Korean case study—a glimpse into the future and lessons on the nature of
targeted attacks.

Report | HP 2013 cyber risk report

3 �darkreading.com/vulnerability/lessons-learned-
from-a-decade-of-vulnera/240148896

http://www.darkreading.com/vulnerability/lessons-learned-from-a-decade-of-vulnera/240148896
http://www.darkreading.com/vulnerability/lessons-learned-from-a-decade-of-vulnera/240148896

5

46% of mobile iOS and Android applications use encryption improperly
Improper use of encryption was one of the top client-side issues uncovered in Fortify on
Demand assessments of over 180 iOS and Android applications. This finding represents a
convergence of two significant issues in modern computing—the near-ubiquity of mobile
technology and the increasing importance of protecting sensitive data in light of persistent
attackers. As the lines are blurred between mobile technology and traditional form factors, and
mobile devices are often used to manipulate confidential data for both personal and business
use, encryption of targeted data is increasingly important as a key defense. See the results of
this study in Security pitfalls of hybrid mobile development platforms.

Internet Explorer was the software most targeted by Zero Day Initiative (ZDI) researchers
Many more vulnerabilities were discovered with more than a 100% increase recorded by the ZDI
over 2012 numbers. This is not a gauge of the security of Internet Explorer®, but rather, results
from the market forces (both legitimate and illegitimate) that govern the price of vulnerabilities
in software with massive market penetration. See Vulnerabilities—the state of play for more
information on what determines the price of vulnerability research, the players involved, and
more ZDI trends from 2013.

Sandbox bypass vulnerabilities are the #1 issue for Java
Sandbox bypass vulnerabilities caused by unsafe reflection are the most prolific issue in the
Java framework and sandbox bypass due to type confusion is the most exploited. Attackers are
significantly escalating their exploitation of Java by simultaneously targeting multiple CVEs and
using Java more often to successfully compromise victims’ computers. Organizations should
seriously consider reducing their attack surface by eliminating Java from environments where it
is not required. We dig into this finding and take a close look at the impact of Java vulnerabilities
on the threat landscape in Java every days.

SCADA systems are increasingly targeted
Supervisory control and data acquisition (SCADA) systems have become increasingly
tempting as a target as represented by the ZDI submissions in 2013. These control systems
manage widespread or niche-based automated industrial processes such as those used for
manufacturing processes, power generation, mining, water treatment, and possibly general
quality control and monitoring processes, which have historically operated over separate
networks and with proprietary protocols.

Report | HP 2013 cyber risk report

6

Report | HP 2013 cyber risk report

Further observations/ Security headlines—security
by numbers

56%

SCADA vulnerabilities continue to rise

Weaknesses revealing information
about application, implementation or user

• Manufacturing processes
• Power generation
• Mining
• Water treatment

Since Stuxnet in 2010,
research in these
vulnerabilities has
dramatically increased.

31.5% Prone to leak system information
through poor error handling

33.5%
Cross-frame scripting security

ZDI team 2013

Pervasive in sites across the internet and remains
significantly present within current test data

#1 Java might be big news, but Microsoft is still the
no. 1 subject for vulnerability research

Microsoft’s Internet Explorer
had the most vulnerabilities
submitted against a single product.

52%
Mobile apps security

Software security

Security issues were a result of
insecure client-side operation

48%
74%

Insecure server-side application code or code
quality issues—unstable application behavior

Unnecessary permissions

7

Mobile—malware, exploits, and vulnerabilities

With the ubiquity of mobile technology, the increasing acceptance of personal devices in the
workplace, and the tight integration of mobile technology into both business and personal
functions, we wonder how much longer the identifier “mobile” as if it’s something different from
everything else will last. Regardless, while the label continues to hold some meaning, we’re
looking at mobile technology from multiple angles this year. Along with our study into the security
pitfalls of hybrid mobile development platforms, and the results of this year’s Mobile Pwn2Own
competition,4 we worked with ReversingLabs to investigate malware on the Android platform.

Mobile malware—or is it?

There has been significant discussion this year about the prevalence of malware targeting the
Android platform, with some antivirus vendors claiming concerning levels in the wild,5, 6 while
others (including Google) have stated the opposite7—that the numbers were insignificant. Is
Android malware a problem or isn’t it?

In order to answer this question and get an idea regarding the prevalence of malware and
potentially unwanted software on the platform, we took over 500,000 apps available on Google
Play, and cross-referenced them against a large collection of over 2 million known Android
malware and adware samples. We also noted how many times the apps had been downloaded
from Google Play.

The results
The initial results appeared to confirm the opinions of some in the antivirus industry that
malware and potentially unwanted software are rampant on the platform. We found adware
that had been downloaded hundreds of millions of times and malware that had been
downloaded tens of millions of times from Google Play by Android users. A breakdown of the
top 10 malware and adware in the charts below:

Report | HP 2013 cyber risk report

4 �pwn2own.com/
5 �mcafee.com/us/resources/reports/rp-quarterly-

threat-q2-2013.pdf
6 �sophos.com/en-us/medialibrary/PDFs/other/

sophossecuritythreatreport2013.pdf
7 �http://h30499.www3.hp.com/t5/HP-Security-

Research-Blog/Trick-or-treat-Who-s-afraid-of-
mobile-malware/ba-p/6255831

The takeaway

Although our research concludes that malware
does not pose a huge threat to mobile platforms
(at least relative to the impact on desktop
environments), the antimalware industry needs
to work in tandem with platform providers on
meaningful and consistent definitions of what
constitutes malicious or deceptive behavior.
The differences between mobile and desktop
operating systems interrupt some threats from
monetizing with more traditional payloads,
but there’s no room for complacency. If there’s
money to be made by taking advantage of people,
processes, or technology then the threats will
undoubtedly appear.

1,100,000

1,200,000

1,300,000

1,400,000

1,500,000

2,000,000

3,000,000

3,500,000

4,300,000

10,000,000

11,000,000

Android.Trojan.Leadbolt

Android.Trojan.Plankton

Android.Trojan.Airpush

Android.Trojan.lgexin

Android.Trojan.Drdlight

Android.Trojan.Apperhand

Android.Trojan.Fakeapp

Android.Trojan.Vtd

Android.Trojan.Fakeflash

Android.Trojan.Imlog

Android.Trojan.Ginmaster vtd

Android.Trojan.Smsagent

45,000,000.00

Android malware—downloads

45,000,000

13,000,000

15,000,000

15,000,000

15,000,000

25,000,000

26,000,000

28,000,000

110,000,000

170,000,000

Leadbolt

Airpush

Youmi

Plankton

Andr

Waps

Addisplay

Adload

Kyview

Adwo

45,000,000.00

Android adware—downloads

380,000,000

http://www.pwn2own.com/
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2013.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2013.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Trick-or-treat-Who-s-afraid-of-mobile-malware/ba-p/6255831
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Trick-or-treat-Who-s-afraid-of-mobile-malware/ba-p/6255831
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Trick-or-treat-Who-s-afraid-of-mobile-malware/ba-p/6255831

8

These numbers looked excessive to us. While Google doesn’t appear to like to use the term
“malware,”8 according to Google Play’s app developer content policy this shouldn’t be occurring:

“We don’t allow content that harms, interferes with the
operation of, or accesses in an unauthorized manner,
networks, servers, or other infrastructure.

•	Don’t transmit viruses, worms, defects, Trojan horses, malware, or any other items that may
introduce security vulnerabilities to or harm user devices, apps, or personal data.

•	Apps that collect information (such as the user’s location or behavior) without the user’s
knowledge (spyware) are prohibited.

•	Malicious scripts and password phishing scams are also prohibited on Google Play, as are apps that
cause users to unknowingly download or install apps from sources outside of Google Play.

•	An app downloaded from Google Play may not modify, replace or update its own APK binary code
using any method other than Google Play’s update mechanism.9”

Discussion
The number of detections for our sample of Android apps was extremely large. However, those
that appeared the most prevalent were detected as adware—a type of potentially unwanted
software (PUS). These apps are still available from Google Play, and have been downloaded and
installed by millions of users deliberately with their consent. When looking at both combined,
the PUS numbers dwarf the malware numbers for downloads.

After a little more digging, it looks like most of these are detected for the following reasons:

•	Pop-up notifications. Annoying and potentially unwanted for some, but others might
appreciate this functionality. Unlike PC versions of adware (which can be notoriously difficult to
remove), Android apps can be removed more easily due to the restrictions of the sandbox.

•	Personal information capture. The permissions for collecting information are shown during the
app’s install—although it might be the case that most users accept them without reading them.

Based on our analysis, it appears that most of the apps that are detected as malware/adware
are not primarily malicious. Their detection seems to be associated with the inclusion of an
ad-serving library. As the app economy has shifted from paid apps to free apps, it has become
normal to include ads in free versions of apps. The developers of these apps could choose any
ad provider, and some of the highest-priced ad providers could supply library code that targets
user info aggressively.

However, several adware libraries, such as Plankton, have been reported to contain backdoor
functionality that has led some in the AV industry to detect these programs as Trojans rather
than adware.10 Even though false detections (or false positives in this case) are possible, data
provided by ReversingLabs lists many software applications available on Google Play that
are detected as malicious. They together amount to over 80M application installs. One would
expect that while these applications are still in Google Play, it would be the responsibility of
Google to determine which of these applications are truly harmful to users and if determined to
be malicious, promptly removed from Google Play.

However, as is often the case when we start discussing less than straightforward malicious
intent, it’s not just Google that might be at odds here with what it defines as malicious and there
is great variability between AV companies and their determinations of Android malware/adware.
We recorded scan results for over 7000 of the most downloaded adware. The table below lists
our results and shows that there is massive variability between the determinations made by
different AV companies. It seems one person’s adware might be another’s benign app.

Report | HP 2013 cyber risk report

8 �	 http://developer.android.com/guide/faq/
security.html#malware

9 �	 http://play.google.com/about/developer-
content-policy.html

10 �	http://nakedsecurity.sophos.com/2011/06/14/
plankton-malware-drifts-into-android-market/

http://developer.android.com/guide/faq/security.html#malware
http://developer.android.com/guide/faq/security.html#malware
http://play.google.com/about/developer-content-policy.html
http://play.google.com/about/developer-content-policy.html
http://nakedsecurity.sophos.com/2011/06/14/plankton-malware-drifts-into-android-market/
http://nakedsecurity.sophos.com/2011/06/14/plankton-malware-drifts-into-android-market/

9

The industry has not yet come to consensus. ESET, Sophos, and Fprot are on the high side (>50%),
whereas Symantec, Microsoft, Kaspersky are on the low side (<5%). These numbers are probably
also affected by the fact that some vendors have an AV solution for the Android platform while
others do not. It is also possible that the Windows®-based command line scanners used for
this test do not contain the full set of Android signatures (as would be available in a scanner
specifically for Android devices).

Android vs iOS
Compared to the high detection numbers for Android apps reported by particular AV companies,
things look very different for iOS, with very few reports of malware for this platform. A major
difference between the Android and iOS app platforms is the screening process of the app store.
The Apple iOS store performs a detailed screening process that can take weeks, and will reject
apps for a number of non-technical reasons, including:

•	2.9 Apps that are “beta,” “demo,” “trial,” or “test” versions

•	2.11 Apps that duplicate apps already in the App Store may be rejected, particularly if there are
many of them

•	2.12 Apps that are not very useful or do not provide any lasting entertainment value may be rejected

•	2.13 Apps that are primarily marketing materials or advertisements will be rejected11

Google Play store publishing happens within hours, and allows apps to be published without
much restriction. One way of looking at it could be that Google is friendlier to developers, and
that it does not reject apps for aesthetic reasons. Another way of looking at it could be that
Google’s revenue is more ad-related than Apple’s hardware-centric revenue, and therefore
Apple can enforce a more consumer-friendly app store policy.

Report | HP 2013 cyber risk report

11 �	https://developer.apple.com/appstore/
guidelines.html

Antivirus scanner Number of detections Antivirus scanner Number of
detections

Antivirus scanner Number of
detections

ESET-NOD32 5121 McAfee 1698 Kaspersky 164

Fortinet 4799 McAfeeGW 1588 Rising 103

DrWeb 4689 Gdata 1336 Kingsoft 51

Sophos 4507 Emsisoft 1314 Microsoft 39

AntiVir 3666 BitDefender 1235 Avast 37

F-Prot 3661 Microworld 174 ClamAV 18

TrendMicro-HouseCall 3574 Bkav 1120 Antiy-AVL 10

Comodo 3253 Commtouch 904 QuickHeal 7

Ikarus 3210 NANO 830 Symantec 6

AVG 3052 Baidu 655 nProtect 1

Fsecure 2795 TrendMicro 168 Norman 1

VIPRE 2538 Jiangmin 166 VBA32 1

https://developer.apple.com/appstore/guidelines.html
https://developer.apple.com/appstore/guidelines.html

10

Conclusions
Modern operating systems have security baked in and mobile platforms are doing better
than their desktop counterparts. A centralized app store is a big win to filter out malware,
and compartmentalized permission requests are also a big win for security, if implemented
correctly. App makers should be following the security best practice of least privilege.

The common-sense line for the mobile apps is yet to be decided in the Android market, as shown
by different stances on mobile malware between Google and antivirus vendors. The industry
needs to work together to come up with consistent definitions of what constitutes malicious or
unwanted behaviors and a sensible app store policy and guidelines, accommodating to app users,
app makers, and third-party ad providers while preventing abuses.

For what we might refer to as “real” (or, more objectively, malicious) malware incidents, the
reported numbers for mobile malware still appear to be low relative to the number of adware
detected. However, absence of evidence is not an evidence of absence. The security industry
should remain vigilant for the new attacks that are sure to come.

Report | HP 2013 cyber risk report

12 �	techrepublic.com/blog/it-security/why-does-an-
android-flashlight-app-need-gps-permission/

Recommendations
With the types of behaviors observed in the malware and adware samples examined in
this study, we offer the following, practical advice for limiting exposure to malicious or
potentially unwanted apps on mobile platforms:

1.	Only download apps from reputable sources.

2.	Pay close attention to permissions when installing apps—read the EULA. If the
permissions seem excessive, out of context for the app, or unjustifiable—don’t
install the app. (A location-sharing flashlight app that recently made headlines12 is a
good example of an app deceptively and unnecessarily gathering location and device
information from users of the app.)

3.	Consider speaking to your service provider to block premium-rate services (sending
messages to premium rate services is a popular payload for some mobile
malware—block these services and remove the risk).

4.	Use a reputable antivirus scanner appropriate to the device’s platform. Much modern
malware is complex, cloud-based, and multi-component—and the same holds true
on mobile platforms. In many cases determining the actual behavior and intent of a
mobile application is a difficult job for even experienced researchers (the difficult nature
of this research may even contribute to the lack of consistent determinations across
the industry as noted in our report).

http://www.techrepublic.com/blog/it-security/why-does-an-android-flashlight-app-need-gps-permission/
http://www.techrepublic.com/blog/it-security/why-does-an-android-flashlight-app-need-gps-permission/

11

Mobile vulnerabilities and exploits

Mobile Pwn2Own
Nothing beats a good proof of concept to turn ideas about the security of particular platforms
on their head—and Mobile Pwn2Own provided some impressive examples. Mobile Pwn2Own
is an annual contest that rewards security researchers for highlighting security concerns
on mobile platforms. The contest focuses on hardening the mobile attack surface through
cutting-edge research and responsible disclosure. For more information on the HPSR Pwn2Own
competitions, see pwn2own.com/.

We had three entrants bring their exploits to the arena to share their research and claim their
prize (in total US$117,500).

•	Our first-ever winning Chinese team presented two different exploits against Safari. The first
exploit demonstrated by the Keen Team resulted in the compromise and capture of Facebook
credentials on iOS 7.0.3 while the second exploit against iOS 6.1.4 resulted in the theft of
photos from the affected device.

•	The MBSD team’s exploit of multiple apps on the Samsung Galaxy S4 was described as
“elegant” by the researchers observing in the room. They were greeted by a surprised and
respectful round of applause as malware was silently installed on the device and the data
exfiltration payload was executed.

•	On day two, within minutes of the attempt, we witnessed a successful exploit on two different
devices and paid US$50,000 for the privilege. Pinkie Pie compromised Chrome on both a
Nexus 4 and a Samsung Galaxy S4 just for good measure. 

Security pitfalls of hybrid mobile development platforms

With more of today’s enterprises looking for a cost-effective means to enter the mobile
application market, the adoption of hybrid development strategies for mobile platforms is
growing. Leveraging existing software development skills such as HTML, CSS, and JavaScript and
applying that knowledge to the mobile application paradigm offers optimal flexibility in budget
and time to market. However, what price does an enterprise have to pay with regard to security?

Approach
In this study, HP Security Research set out to conduct a comprehensive evaluation of how
well the built-in feature sets of various hybrid platforms encourage and ease the secure
development of cross-platform mobile applications. Essential to the usefulness and
completeness of the study was the proper selection of the hybrid development platforms and
the categories of security vulnerabilities to evaluate the chosen platforms against. Selection of
the hybrid development platforms was done based on the popularity of the platforms amongst
developers as well as the coverage of the architectural principles employed by the platforms.

The vulnerability categories used in the evaluation were chosen based on real-world data
collected by HP Fortify on Demand. Analysis of the issues reported by these data highlighted
the criticality of four major components: encryption, storage, permissions, and the WebView
to the security of a mobile application. In addition to these four categories, our research also
identified extensibility architecture as a prominent contributor to security health, especially,
of a hybrid mobile application given its importance to closing the gap between the native
functionality support and the features exposed by the hybrid platform.

Report | HP 2013 cyber risk report

The takeaway

This study sheds light on some of the areas to
consider when selecting hybrid development
platforms and the associated security risks faced by
mobile applications developed using this approach.
Missing or weak encryption was identified as the
top issue in native mobile applications and based on
the API analysis, which has a potential to be equally
damaging to the hybrid mobile applications. In
other cases, certain features of the hybrid platform
such as the whitelist-based cross-domain access
restrictions, could prove beneficial for developers
looking to rewrap their existing web applications,
which have most of the sensitive work and
storage done on server side. Hybrid development
technologies are evolving rapidly and developers
planning to use them must carefully review their
security requirements against the support available
within the framework being considered.

The takeaway

Our experience at this year’s Mobile Pwn2Own
competition placed the perceived security of
mobile devices right in the spotlight and raised
some interesting questions regarding users’
perception of mobile security.

The competition showed clearly that vulnerabilities
do exist and can be exploited to see the same kinds
of resulting compromises and payloads as we see on
more traditional platforms. Same methods of attack,
same avenues of compromise, same targeted
information and resources, same payloads. The real
difference is users don’t expect these attacks on
mobile platforms and hence aren’t modifying their
behavior accordingly considering the level of risk.

There is an implicit level of trust that users bring to
their use of mobile devices that may be somewhat
misplaced. While the exploit of mobile devices
isn’t exactly child’s play (or even remotely close)
our observations indicate an endgame where the
personal, sensitive, confidential, valuable data
that is stored on a mobile is just as vulnerable to
compromise directly by attackers, or indirectly by
malware, as the data stored anywhere else.

http://www.pwn2own.com/

12

Overview of hybrid platforms

The main goal of nearly all hybrid mobile technologies is to support cross-platform
development. The similarities, however, end there. Beyond this common purpose, the
popular hybrid development platforms that are being increasingly adopted today utilize fairly
distinct approaches to expose the native device functionality to applications using popular
web technologies or programming languages. In this study, we focused on three hybrid
development technologies, namely, PhoneGap 2.9.0, Xamarin Studio 4.0.13, and Appcelerator
Titanium 2.x. While all of the three platforms aspire to provide the benefit of cross-platform
development, they differ noticeably in four key areas.

Programming languages
In addition to supporting cross-platform development, hybrid technologies also offer developers the
convenience of using widely adopted web technologies or programming languages and minimize
the need for mastering device-specific technologies. PhoneGap, for instance, supports popular web
development technologies like HTML, Cascading Style Sheets (CSS), and JavaScript.13 The Xamarin
platform, on the other hand, generates native code from C# code thus allowing developers to use
the power of the .NET framework for cross-platform mobile application development.14 Titanium,
similar to PhoneGap, allows developers to use JavaScript code to create cross-platform mobile
applications and uses V8 or Rhino on Android and JavascriptCore on iOS for JavaScript execution.15

User interface (UI) rendering
PhoneGap relies on an embedded WebView container for rendering UI and executing JavaScript.
Since Xamarin compiles the C# code into native binaries, the rendering is performed by the
corresponding device OS. It forgoes the need for an intermediate rendering layer like the
WebView container in PhoneGap. Titanium also generates native application binaries from the
JavaScript code and also relies on the native OS for UI rendering instead of the WebView.

Access to native functionality
PhoneGap makes use of the WebView container as a bridge that allows the exchange of messages
between the JavaScript code and the native code thus providing access to native device features
such as camera and accelerometer. Xamarin builds against the .NET Base Class Libraries with
specially crafted Xamarin Mobile Profile packaged in MonoTouch and Mono.Android dll to provide
a one-to-one mapping with the device feature APIs.16 Titanium’s API library consists of modules,
which when referenced create the JavaScript to native API bindings.17

Extensibility
PhoneGap has developed a plugin API to enable developers to create their own extensions or
use third-party plugins for exposing device features missing from official PhoneGap standard
API.18 Xamarin supports C# bindings to third-party Objective-C libraries19 for iOS applications
and also allows developers to bundle Android native libraries with their C# projects.20 In
Titanium extensibility is supported in the form of a module API that allows the creation and use
of third-party modules for extending the core platform functionality.16

Top security issues plaguing mobile applications

In an attempt to focus the hybrid platforms evaluation on relevant and significant security issues
plaguing the mobile applications, we evaluated security findings from assessments performed
by HP Fortify on Demand. The data set included findings from audits of over 180 native mobile
applications across both the iOS and Android platforms. The 216 unique vulnerability categories
detected during the audits were distributed almost evenly between two major buckets. Nearly
52% of the issues were a result of insecure client-side operation whereas about 48% were related
to either insecure server-side application code or code quality issues that could result in unstable
application behavior. The server-side vulnerabilities and code quality issues were excluded from
this study because they are fairly agnostic to the application development approach and must be
fixed regardless of the use of native or the hybrid approach.

Deeper analysis of the client-side issues helped us identify four major categories of security
vulnerabilities that commonly put the integrity of the mobile applications and the user’s data at
risk. Figure 1 shows the distribution of these categories across the entire data set. A breakdown
of each category shown in Figure 2 offers further insight into the security mistakes that
developers commonly fall victim to when developing mobile applications.

Report | HP 2013 cyber risk report

13 �	http://docs.phonegap.com/en/edge/guide_
overview_index.md.html#Overview

14 �	http://docs.xamarin.com/guides/cross-
platform/getting_started/introduction_to_
mobile_development/

15 �	appcelerator.com/blog/2012/05/comparing-
titanium-and-phonegap/

16 �	http://docs.appcelerator.com/titanium/2.0/#!/
guide/Creating_a_New_Titanium_Module

17 http://docs.phonegap.com/en/2.9.0/
18 http://docs.phonegap.com/en/edge/guide_

hybrid_plugins_index.md.html#Plugin%20
Development%20Guide

19 http://docs.xamarin.com/guides/ios/advanced_
topics/binding_objective-c/

20 http://docs.xamarin.com/guides/android/
advanced_topics/java_integration_overview/

http://docs.phonegap.com/en/edge/guide_overview_index.md.html#Overview
http://docs.phonegap.com/en/edge/guide_overview_index.md.html#Overview
http://docs.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
http://docs.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
http://docs.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
http://www.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap/
http://www.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap/
http://docs.appcelerator.com/titanium/2.0/#!/guide/Creating_a_New_Titanium_Module
http://docs.appcelerator.com/titanium/2.0/#!/guide/Creating_a_New_Titanium_Module
http://docs.phonegap.com/en/2.9.0/
http://docs.phonegap.com/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://docs.phonegap.com/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://docs.phonegap.com/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/
http://docs.xamarin.com/guides/android/advanced_topics/java_integration_overview/
http://docs.xamarin.com/guides/android/advanced_topics/java_integration_overview/

13

Report | HP 2013 cyber risk report

The statistics indicate that the developers
either completely miss encryption before
storing sensitive information on device or
often rely on weak algorithms.

Encryption
Missing or misused cryptographic APIs made for a common occurrence in our analysis of
encryption-related vulnerabilities. The statistics indicate that the developers either completely
miss encryption before storing sensitive information on device or often rely on weak
algorithms. Also 41% of the encryption-related issues resulted from unencrypted transfer of
sensitive information. Although a small fraction, it was interesting to see that developers often
released applications with SSL certification validation disabled.

Storage
Our analysis of native vulnerabilities found that the insecure use of storage APIs is a prominent
root cause of security issues. Unsafe storage of information on publicly accessible external SD
cards is seen to be a common practice amongst mobile application developers and was found to
be responsible for nearly 42% of all storage-related issues. SQL injection vulnerabilities, which
could similarly expose contents of the device database constituted approximately 21% of the
issues. Additionally, almost 38% of the issues were related to insecure logging practices as well
as hardcoding of sensitive information, which runs counter to age-old security best practices.

Permissions
Modern mobile phones offer powerful device features natively and also allow applications to expose
custom features for reusability. The permissions model is essential for preventing the misuse of
these features, examples of which include permission to use the camera, external storage, Internet,
and others as well as permissions to share the custom components between apps. Unfortunately,
74% of the issues were caused by Android applications requesting more permissions than were
necessary for their operation thus putting the user’s data at risk in case of a compromise.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Encryption

Insecure certificate
verification, 8%

Unencrypted
storage, 51%

Insecure SSL
configuration, 41%

Insecure logging
and hardcoded
information,
37.93%

Insecure storage
location, 41.38%

Insecure native
access via HTML
injection, 20%

Untrusted content,
80%

Insecure database
access, 20.69%

Excessive
permissions, 74%

Unrestricted
cross-domain
communication,
26%

Permissions Storage WebView

Figure 2
Further breakdown of the security issues constituting the top four categories

Figure 1
Distribution of native mobile application vulnerabilities across the top four categories

Permissions

Encryption

WebView

Storage

45,000,000.00

Top client-side issues in native mobile applications

46%

24%

26%

24%

14

WebView
Lack of proper input validation was found to be a prevalent problem as well, with 80% of the
issues resulting in cross-site scripting vulnerabilities and 20% of the issues allowing unsafe
access to the native device APIs.

Top concerns of hybrid development

The preceding analysis of the native mobile application vulnerabilities formed the basis for
selection of the security requirements used during the evaluation of the built-in security support
offered by the three hybrid development platforms. In addition to the encryption, permissions,
storage, and WebView dimensions chosen based on the analytical data referenced above, we
also included extensibility as the fifth and final dimension. As seen in the overview of the hybrid
platforms, extensibility is a critical component of any hybrid development environment.

These five dimensions were further broken down into sub-categories for deeper analysis.
During the evaluation, we reviewed each framework to determine if:

•	They make available APIs that would encourage developers to implement sensitive features in
an insecure fashion

•	They are missing critical APIs thus forcing the developers into implementing features insecurely

Below, we describe the key findings from the evaluation of the three frameworks against the
five category selections:

Cryptography / Secure Sockets Layer (SSL)
Neither PhoneGap20 nor Titanium21 provide a built-in encryption API, which could result in the
proliferation of information disclosure issues arising from unencrypted storage and the need to
rely on native plugins for their encryption needs. They also lack the API support for applications
to selectively enable SSL ciphers, which can result in insecure SSL configuration and the reliance
on weak ciphers for protection of information in transit. Furthermore, they allow insecure
certificate verification practices by offering a trustAllHosts setting in the FileTransfer22 API
thus allowing developers to completely disable SSL hostname verification.23 While hostname
verification can be disabled in Xamarin as well,24 it does not support a convenient API or a
setting like the other two frameworks that will let developers do so easily.

Storage
Failure to strictly prohibit non-parameterized queries in the SQLite APIs of both Titanium25
and Xamarin libraries26 can lead to insecure development practices and expose the hybrid
applications to insecure database access or SQL injection issues. In PhoneGap, on the other
hand, the API lacks the option to allow developers control over whether a file is written to the
external or internal storage as well as whether it is visible to world for read/write or none, thus
potentially exposing PhoneGap applications to unintentional use of insecure storage location.27

Permissions
Both the Titanium and PhoneGap frameworks automatically generate the native configuration
file (AndroidManifest) with insecure defaults28, 29 increasing the potential for excessive
permissions to be granted to an application on the Android platform without the developer’s
knowledge. Because any application with an INTERNET permission is capable of reading
sensitive information and transmitting it to any domain on the Internet, restricting an
application’s domain access is essential. Our study, however, shows that PhoneGap offers a
provision to restrict such access through the Access Origin setting30 whereas Titanium follows
the best practice by enforcing the same origin restriction by default.31 Xamarin, however,
lacks support for domain whitelisting, which could potentially cause the applications to enable
unrestricted cross-domain communication.

Report | HP 2013 cyber risk report

20 �	http://docs.phonegap.com/en/2.9.0/
21 �	http://docs.appcelerator.com/titanium/2.1/#!/api
22 �http://docs.phonegap.com/en/2.9.0/cordova_

file_file.md.html#FileTransfer
23 �	http://docs.appcelerator.com/titanium/2.0/#!/

api/Titanium.Network.HTTPClient
24 http://social.msdn.microsoft.com/Forums/

vstudio/en-US/acb2fde0-32a5-403c-805d-
43bdc8e37c7f/how-to-disable-certificate-
hostname-validation-between-net-c-client-
and-secure-web-service

25 http://docs.appcelerator.com/titanium/3.0/#!/
api/Titanium.Database.DB-method-execute

26 http://msdn.microsoft.com/en-us/library/
sebfsz50(v=vs.110).aspx

27 http://docs.phonegap.com/en/2.9.0/cordova_
file_file.md.html#requestFileSystem

28 http://developer.appcelerator.com/
question/118483/android-uses-permissions

29 http://stackoverflow.com/questions/16787934/
do-i-need-an-androidmanifest-xml-when-
working-with-phonegap

30 http://docs.phonegap.com/en/2.9.0/
guide_whitelist_index.md.html#Domain%20
Whitelist%20Guide

31 http://docs.appcelerator.com/titanium/3.0/#!/
guide/Mobile_Web_Debugging_and_Testing_Tools

http://docs.phonegap.com/en/2.9.0/
http://docs.appcelerator.com/titanium/2.1/#!/api
http://docs.phonegap.com/en/2.9.0/cordova_file_file.md.html#FileTransfer
http://docs.phonegap.com/en/2.9.0/cordova_file_file.md.html#FileTransfer
http://docs.appcelerator.com/titanium/2.0/#!/api/Titanium.Network.HTTPClient
http://docs.appcelerator.com/titanium/2.0/#!/api/Titanium.Network.HTTPClient
http://social.msdn.microsoft.com/Forums/vstudio/en-US/acb2fde0-32a5-403c-805d-43bdc8e37c7f/how-to-disable-certificate-hostname-validation-between-net-c-client-and-secure-web-service
http://social.msdn.microsoft.com/Forums/vstudio/en-US/acb2fde0-32a5-403c-805d-43bdc8e37c7f/how-to-disable-certificate-hostname-validation-between-net-c-client-and-secure-web-service
http://social.msdn.microsoft.com/Forums/vstudio/en-US/acb2fde0-32a5-403c-805d-43bdc8e37c7f/how-to-disable-certificate-hostname-validation-between-net-c-client-and-secure-web-service
http://social.msdn.microsoft.com/Forums/vstudio/en-US/acb2fde0-32a5-403c-805d-43bdc8e37c7f/how-to-disable-certificate-hostname-validation-between-net-c-client-and-secure-web-service
http://social.msdn.microsoft.com/Forums/vstudio/en-US/acb2fde0-32a5-403c-805d-43bdc8e37c7f/how-to-disable-certificate-hostname-validation-between-net-c-client-and-secure-web-service
http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.Database.DB-method-execute
http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.Database.DB-method-execute
http://msdn.microsoft.com/en-us/library/sebfsz50(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/sebfsz50(v=vs.110).aspx
http://docs.phonegap.com/en/2.9.0/cordova_file_file.md.html#requestFileSystem
http://docs.phonegap.com/en/2.9.0/cordova_file_file.md.html#requestFileSystem
http://developer.appcelerator.com/question/118483/android-uses-permissions
http://developer.appcelerator.com/question/118483/android-uses-permissions
http://stackoverflow.com/questions/16787934/do-i-need-an-androidmanifest-xml-when-working-with-phonegap
http://stackoverflow.com/questions/16787934/do-i-need-an-androidmanifest-xml-when-working-with-phonegap
http://stackoverflow.com/questions/16787934/do-i-need-an-androidmanifest-xml-when-working-with-phonegap
http://docs.phonegap.com/en/2.9.0/guide_whitelist_index.md.html#Domain%20Whitelist%20Guide
http://docs.phonegap.com/en/2.9.0/guide_whitelist_index.md.html#Domain%20Whitelist%20Guide
http://docs.phonegap.com/en/2.9.0/guide_whitelist_index.md.html#Domain%20Whitelist%20Guide
http://docs.appcelerator.com/titanium/3.0/#!/guide/Mobile_Web_Debugging_and_Testing_Tools
http://docs.appcelerator.com/titanium/3.0/#!/guide/Mobile_Web_Debugging_and_Testing_Tools

15

WebView
The PhoneGap platform solely relies on the WebView container for rendering and executing
applications and is necessary to expose the native device features to the HTML and JavaScript
code.32 The ability for a PhoneGap-based hybrid application to access native device features
from HTML/JavaScript code using the native WebView or UIWebView can lead to insecure native
access via HTML injection.

Extensibility
A hybrid application could suffer a compromise from insecure third-party components because
most hybrid platforms don’t support all the native functionality and require developers to
rely on plugins by providing the custom plugin interface. However, in the absence of a vetting
process, there is a high propensity for the plugins to contain serious vulnerabilities or have a
malicious intent.

The table below depicts the security concerns associated with individual hybrid development
platforms based on the API characteristics described above.

Report | HP 2013 cyber risk report

Categories Platforms

PhoneGap Titanium Xamarin

Android iOS Android iOS Android iOS

Crypto/SSL Unencrypted storage X X X X

Insecure SSL

configuration

X X X X

Insecure certificate
verification

X X X X X X

Storage Insecure database
access

X X X X

Insecure storage
location

X

Permissions Excessive permissions X X

Unrestricted
cross-domain
communication

X X

WebView Insecure native access
via HTML injection

X X

Extensibility Insecure third-party
components

X X X X X X

16

Secure development of hybrid mobile applications

The results from the analysis of the APIs currently supported by the chosen hybrid platforms pinpoint
some of the hybrid development features, which if hardened with basic security enhancements,
could help developers avoid the same pitfalls observed in insecurely built native applications.

One such example is the FileStorage API in PhoneGap. Enhancing this API to let developers
configure the destination storage location (application sandbox vs. external SD card) and the
visibility of the generated files (public vs. private) will help reduce the risk of information theft
in PhoneGap applications. Similarly, implementing the SQL query execution API in Xamarin and
Titanium in a manner that encourages developers to use parameterized queries by default can
curtail SQL injection vulnerabilities.

On the encryption front, the ability to configure the desired SSL ciphers could enable developers
to work around the device’s default cipher list. Increasing the reliance on the native data
protection API for data storage whenever possible and built-in support for strong encryption
algorithms would ensure the reliable protection of sensitive information handled by hybrid
mobile applications.

Additionally, a careful review of the default permissions granted in the configuration artifacts
generated automatically by the frameworks is paramount and will help mitigate issues
resulting from excessive permissions. Prevention of insecure cross-domain data exchange
via malicious input injection can similarly be facilitated in the Xamarin framework by offering
domain whitelisting capabilities as done by PhoneGap and Titanium. The hybrid platforms could
also take steps to mitigate the risks introduced by the inclusion of third-party components.
Enhancing the built-in support for native features and offering a central repository backed by
a robust verification process for crowd sourced components could help reduce the risks from
malicious plugins.

•	discoveries and creations to the highest bidder, to organized criminals or even nation-states.

Report | HP 2013 cyber risk report

Recommendations
Developers must stay cognizant of such security pitfalls in the hybrid frameworks and
must also bear some of the burden by ensuring that they follow the security guidelines
to protect the integrity of their applications and the privacy of their users. The following
best practices have been formulated based on the findings from this study:

•	�Avoid disabling host name validation from production applications to ensure proper
verification of all the services involved in any interaction.

•	Review all the configuration artifacts and the permissions requested by the application.

•	Properly validate all external content and input consumed by the application when
executing in the WebView container.

•	Carefully configure the domain whitelists to minimize impact from input injection attacks.

17

Vulnerabilities—the state of play

Vulnerabilities, proofs of concept, and exploits

This section of the report focuses specifically on vulnerability research, the factors that drive
its direction, and the tangible outcomes that arise and impact everyone as a result of that
research. However, before we dig into the numbers and the details, we need to talk a little
bit about the greater context for vulnerability research, and how it fits into and shapes the
greater threat landscape. These considerations are key to understanding the relevance of the
vulnerability statistics to follow.

In this report, we discuss vulnerabilities, proofs of concept, exploits, and the vulnerability
market. For the uninitiated:

•	Vulnerabilities are defects or bugs that allow for external influence on the availability,
reliability, confidentiality, or integrity of software or hardware. Vulnerabilities can be exploited
to subvert the original function of the targeted technology.

•	Proofs of concept (POC) are provided by vulnerability researchers when they report the
discovery of a vulnerability. These POCs demonstrate the vulnerability to the affected vendor
or buyer, (but generally exclude a hostile payload delivery).

•	Exploits are code written expressly to take advantage of the security gap created by a
particular vulnerability in order to deliver a malicious payload. They may be targeted at
specific organizations or used en masse in order to compromise as many hosts as possible.
Delivery mechanisms utilize many different technologies and vehicles and often contain a
social engineering element (effectively an exploit against vulnerabilities in human nature in
order to make the victim take a particular action of the attacker’s choosing).

•	The vulnerability market is the informal, unregulated marketplace for the buying and selling
of vulnerability research. The legitimacy of the actors in the marketplace is highly variable and
ranges from white hat bug bounty programs (such as the ZDI), to ethical researchers motivated
by improving security for everyone, to mercenary vulnerability researchers who sell their
discoveries and creations to the highest bidder, to organized criminals or even nation-states.

Report | HP 2013 cyber risk report

The takeaway

Regardless of the influences of both the market and
the nature of our measurements of vulnerabilities,
it is important to prioritize your patch management
efforts based on what is actively being targeted
by attackers today. Introduce risk calculations into
metrics surrounding vulnerability exposure for a
specific business, or industry (e.g. the number of
unpatched machines running Java vs. Notepad). If
targeted technology exists in your environment and
it is not critical for your business then remove it.
Reduce your exposure; reduce the attack surface.

18

A marketplace of ideas
The vulnerability market is an economic sub-ecosystem within the security industry. Operating
as a worldwide marketplace with buyers, sellers, supply and demand, its complexity has
grown over the past decade. In the earliest days, the market was a place for hackers to trade
and sell exploits amongst themselves for eminence, disruption of traditional IT and software
development pipelines, and sometimes for ill-gotten profit. Over the last three decades, the
market for vulnerabilities and coveted exploits has changed into a more legitimate commercial
space rather than strictly being a black-market.

HP’s Zero Day Initiative (ZDI) pioneered the vulnerability “white market” and its mission is to
disrupt the operation of the black market section of the marketplace by legitimately purchasing
vulnerability research that can then be disclosed to affected vendors. In this way, these
vulnerabilities are effectively taken off the market for possible abusers and the affected vendors
are able to create patches to address these holes before the information is made public. Or put
another way, the ZDI team’s focus is on securing the ecosystem using incentivized coordinated
disclosure to affected vendors to prevent blind-sided attacks on corporate environments.

The price that is determined by the operation of the market for the discovery of particular types
of vulnerabilities is a major determiner of the types of vulnerability research that is carried
out. The higher the price, the more interest there will be in particular types of technology, OS,
or application. This is an important distinction—just because there are a lot of vulnerabilities
reported for a particular technology or application, it doesn’t necessarily mean that that
technology is inherently unsafe (or less safe than other, similar technology). All software and
hardware is prone to vulnerabilities. Those that are discovered are often discovered because
there is greater motivation to research that technology due to the higher perceived rewards
for the researchers. (The interest in Microsoft Internet Explorer and the correspondingly high
number of vulnerabilities discovered is a good example of this effect.)

There are a number of different factors that drive the price of a particular vulnerability, but it is
generally determined by a combination of the following characteristics:

Report | HP 2013 cyber risk report

Exclusivity

• Restricting
 purchase to a
 single buyer
 demands a
 higher price

• Multiple buyers
 reduces
 vulnerability or
 exploit value

Time
sensitivity

• Value diminishes
 proportionally to
 the number of
 people aware of
 a vulnerability

• A race takes place
 against vendors,
 other researchers,
 and the market
 components
 (white, grey,
 and black)

Valuation

• Vulnerability
 rates are
 considered
 intellectual
 property and not
 publicly available

• Many difficult-to-
 measure factors
 affect final value

Reputation

• Researchers
 develop their
 own finesse and
 management of
 their brand equity
 (can include
 contest wins),
 resulting in
 higher payouts

Vulnerability
scope

• Vulnerabilities
 in widely used
 applications
 or operating
 systems are
 more sought
 after resulting in
 higher valuation,
 particularly if a
 vulnerability
 applies across
 multiple/current
 versions

Over the past year, the debate on pricing has morphed into a debate on regulating the
marketplace. Advocacy arguments publicly occur on both sides: Regulation would bring
transparency to a secretive market, versus regulation impinging on researchers’ rights,
which needlessly restricts a free market and creates unnecessary additional risk to corporate
endeavors such as IT operations or software development.

19

A final word on collecting accurate vulnerability data
Vulnerability information is available from a number of different outlets, including public
repository programs such as NVD or OSVDB, private bug bounties such as HP’s ZDI, private
security consultants, vendor bug bounty programs, and the underground black market.

While the public repositories provide a glance into the vulnerability landscape—it is limited to
reporting those that are publicly disclosed or directly submitted to the organization. This leaves
a silo-driven gap for any one organization’s ability to speak to the security and vulnerability
landscape as a whole.

The very nature of software and its propensity toward vulnerabilities suggests strongly that
there are zero days being exploited in the wild that we do not yet know about. So, we know what
we know, we don’t know what we don’t know, but we also know that there is some information
that we don’t know—yet. And you need to make decisions and take appropriate action
understanding these limitations.

The numbers

This section of the report uses data from the National Vulnerability Database (NVD) and the HP
Zero Day Initiative (ZDI). Examining this data has led us to make the following observations:

•	Finding 1: Total number of software vulnerabilities reported holds steady over time.33

•	Finding 2: The number of critical severity vulnerabilities is declining.34

•	Finding 3: SCADA systems are being increasingly targeted by vulnerability researchers and
that interest is having an impact. The ZDI received more than double the number of SCADA
vulnerability submissions in 2013 than it did in 2012.

Finding 1: Total number of software vulnerabilities reported holds steady

The total number of new vulnerabilities reported through November 2013 (4704) decreased by
roughly 6% from those disclosed in the same period for 2012 (5012). However, total numbers
reported increased over 2010 and 2011 statistics.

Report | HP 2013 cyber risk report

33 �	http://static.nvd.nist.gov/feeds/xml/cve/
nvdcve-2.0-2013.xml

34 �	http://static.nvd.nist.gov/feeds/xml/cve/
nvdcve-2.0-2013.xml

35 �http://static.nvd.nist.gov/feeds/xml/cve/
nvdcve-2.0-2013.xml

The total number of disclosed vulnerabilities as reported by HP’s ZDI demonstrates a fairly
consistent trend although for program reasons, 2012’s statistics are significantly reduced and
do not reflect occurrences in the broader landscape.

Total vulnerabilities

0

1000

2000

3000

4000

5000

6000

2010 2011 2012 2013

Figure 1
Disclosed vulnerabilities measured by NVD, 2010–201335

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml

20

Report | HP 2013 cyber risk report

The lack of a significant decrease in the number of reported vulnerabilities demonstrates
the continued struggle to secure the ecosystem. Vulnerabilities still occur, largely due to
software developers continuing to make assumptions regarding the environment in which
their application will run and that frequently do not hold during the execution of the program.
Researchers continue to discover them, and vendors must continue to patch.

What this does not speak to is the volume of vulnerabilities that are not publicly disclosed when
found—those being delivered to the black market for private and/or nefarious consumption.

Finding 2: High-severity vulnerabilities are decreasing

Vulnerability severity is based on the CVSS scoring system. This system is designed to provide
an open and standardized method for rating IT vulnerabilities.36

The number of vulnerabilities classified as “high severity” as reported by NVD has slowly
declined since 2010.37 Vendors have begun incorporating better security technologies—such as
sandboxes—into their software, which makes it more difficult to obtain system access. To do so
would require chaining multiple vulnerabilities together.

The score is calculated against six base metrics:38

•	Access vector

•	Access complexity

•	Authentication

•	Confidentiality impact

•	Integrity impact

•	Availability impact

From this, the vulnerability is assigned a numeric score on a scale of 0 to 10. Not all vulnerabilities
have equal impact. Those vulnerabilities of the highest severity are scored in the range of 7 to 10;
medium at 4 to 6.9; and the lowest severity are 0 to 3.9. A CVSS base score greater than 7.5 would
indicate a severe compromise of the operating system of the host target where the product executes.

36 �	first.org/cvss
37 �	http://static.nvd.nist.gov/feeds/xml/cve/

nvdcve-2.0-2013.xml
38 �hfirst.org/cvss/faq

Figure 2
Vulnerabilities disclosed by HP’s Zero Day Initiative, 2010–2013

Total disclosures

0

100

200

300

400

2010 2011 2012 2013

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.first.org/cvss
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
�http://www.first.org/cvss/faq

21

Report | HP 2013 cyber risk report

39 �	http://static.nvd.nist.gov/feeds/xml/cve/
nvdcve-2.0-2013.xml

40 �	hpenterprisesecurity.com/collateral/
whitepaper/HP2012CyberRiskReport_0213.pdf

Zero Day Initiative 2013

Due to the ZDI’s position as one of the premier vulnerability acquisition programs, the team’s
researchers have analyzed some of the most interesting vulnerabilities to have occurred over
the past year. The daily traffic gives the team a unique insight into what attracts the interest of
external researchers.

In 2013 the ZDI saw a number of new external researchers join the white hat market and as a
result, there was a shift in vendors and products reported against. However, the shift from 2012
to 2013 was only significant enough to change the order of the top four vendors (Microsoft,
Oracle, Apple, and Hewlett-Packard) and includes the addition of one new vendor (Advantech).

When simultaneously conducting research as well as performing as a participant in the
vulnerability white market, the goal is to earn a sustainable living, supplement one’s income,
and/or gain brand equity. To do so successfully, the researcher often targets vulnerabilities in
the most widely used applications or operating systems by major vendors with the largest user
mass, referred to as “surface area.” That is not to imply in any way that these vulnerabilities are
easy discoveries. If such vulnerabilities are found, they are more likely to result in payment by
the worldwide top four vendors in the chart above.

Finding 3: SCADA systems are increasingly targeted by vulnerability researchers and that
interest is having an impact on the number of vulnerabilities identified.

Another extremely tempting target—supervisory control and data acquisition (SCADA)
systems—is represented by the inclusion of Advantech in the top five vendors for ZDI
submissions in 2013. These control systems manage widespread or niche-based automated
industrial processes such as those used for manufacturing processes, power generation,
mining, water treatment, and possibly general quality control and monitoring processes, which
have historically operated over separate networks and with proprietary protocols.

As documented in last year’s report,40 migration has begun to fold these systems into standard
networks, and in some cases even via the Internet to simplify asset management, billing, and
operations. As these systems continue to migrate away from their separate isolated networks,
certain security problems that were once masked by a restricted surface area for attack have
begun to emerge. SCADA systems first gained attention after the Stuxnet worm was discovered
to have infiltrated an Iranian uranium enrichment plant in 2010 specifically targeting equipment
manufactured by one company, and illustrates why ZDI’s external researchers are actively
interested in finding, and disclosing these vulnerabilities.

Figure 3
Disclosed vulnerabilities by severity measured by NVD, 2010–201339

High: 7–10 Medium: 4–6.9 Low: 0–3.9

0

1000

2000

3000

4000

5000

6000

2010 2011 2012 2013

Figure 4
Top five vendors by submission to the ZDI in 2013

Oracle

Microsoft Apple

Hewlett-Packard

Advantech

45,000,000.00

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.hpenterprisesecurity.com/collateral/whitepaper/HP2012CyberRiskReport_0213.pdf
http://www.hpenterprisesecurity.com/collateral/whitepaper/HP2012CyberRiskReport_0213.pdf

22

Report | HP 2013 cyber risk report

It has been observed from the SCADA submissions into the ZDI program that most of the
SCADA software applications are lacking security functionality, thus researchers find numerous
vulnerabilities. Most of these vulnerabilities are of high severity and are not complicated to
exploit—such as stack overflows.

Figure 5
SCADA submissions to the ZDI 2010–2013

0

5

10

15

20

25

30

2010 2011 2012 2013

ZDI top products

As discussed in detail in another section of this report, Java continues to place within the top
five product submissions forwarded to the ZDI program by researchers. External researchers
are shifting focus to client-side vulnerabilities more, thus targeting IE and Java. Looking at total
surface area, it comes as no surprise that Internet Explorer is the number one targeted product
for vulnerabilities in 2013. Web browser vulnerabilities overall more than doubled in 2013 with
all but one attributed to Microsoft’s flagship browser.

It is likely this is what prompted Microsoft to enter the white market in June of 2013. Its follow-on
program included payouts for critical vulnerabilities that affected IE 11 Preview on Windows 8.1
Preview during a 30-day window.

Internet Explorer is also the number one product purchased in the ZDI program comprising
just over 51% of all vulnerabilities purchased. Researchers are finding more complicated
vulnerabilities in Internet Explorer—such as use-after-free—which is a trending vulnerability in
the web browser’s world.

Figure 6
Top five products by submission to the ZDI in 2013

Java

Internet Explorer Web Access

QuickTime

ESP

45,000,000.00

23

Report | HP 2013 cyber risk report

Diving into the top four vendors a bit more we see that, with the exception of HP, researchers
are targeting relatively few products.

The takeaway

While there are small shifts in the landscape—
less critical vulnerabilities, focus on client-side
software, and increase in SCADA vulnerabilities—
there are no major improvements for users. The
threat landscape still exists and we continue
to mitigate through patch management and
identifying the chinks in the armor that may allow
for targeted attacks.

Figure 7
All products purchased by the ZDI in 2013

Internet Explorer

Windows

IIS

Java

Data quality

Endeca server

DataProtector

Virtual user generator

Network virtualization

LeftHand Virtual SAN

uCMDB

Unified functional testing

QuickTime

OS X

WebAccess

0 10 20 30 40 50 60 70 80 90

WindowsInternet Explorer IIS

45,000,000.00

Microsoft

Data QualityJava Endeca Server

45,000,000.00

Oracle

Virtual User GeneratorDataProtector

LeftHand Virtual SANNetwork Virtualization

Unified Functional TestinguCMDB

45,000,000.00

Hewlett-Packard

OS XQuickTime

45,000,000.00

Apple

24

Report | HP 2013 cyber risk report

Software security

To gain a true measure of the current state of software security, we analyzed the results of over
2200 audits performed by HP Fortify on Demand. Both static (performing a code level review)
and dynamic (attacking the running application as an attacker would) analysis methods were
employed. To accurately compare the two distinct methods of testing, we used the HP Fortify
taxonomy41 to examine the results.

The HP Fortify taxonomy
The HP Fortify taxonomy was introduced in February 200642 as a means to identify a common
vocabulary of software security errors. The taxonomy primarily classified vulnerabilities
discovered through static analysis and, more recently, runtime analysis. New for 2014, HP
Fortify will introduce dynamic analysis to the taxonomy; allowing for a single unified vocabulary
across static, runtime, and dynamic analysis. For a more detailed description of the taxonomy,
please refer to the online reference HP Fortify Taxonomy: Software Security Errors.43

Kingdom distribution
A kingdom in the HP Fortify taxonomy represents a collection of the software security errors
related to a particular area of program functionality or resulting from the violation of a common
principle. Each kingdom contains categories and sub-categories of software security errors.
The following graph represents the distribution of kingdoms discovered in the test data.

The takeaway

From the applications tested over the past year,
the clearest message our analysis uncovers is
that organizations need to be more cognizant
of what their applications are revealing post
implementation. While the relative impact of
vulnerabilities such as cross-site scripting and
SQL injection is indeed significant, improvement
is needed to decrease the amount of information
provided to the attacker. In a similar vein, paying
more attention to the data your application handles
and its implied sensitivity will help define the
necessary security controls for your application
and, most importantly, where to apply them.

At a glance, Figure 4 reveals nearly 81% of the applications we tested contained at least one
vulnerability relating to the environment. Consider that most vulnerability categories within the
environment kingdom reside outside of the source code; specifically, vulnerabilities related to
server misconfiguration, improper file settings, sample files, outdated software versions, or other
issues related to insecure application deployment. This reinforces the need for organizations to
implement a layered approach to application security beyond solely static or dynamic analysis—
focusing on holistic security topics that also consider liabilities related to the deployed application.

Next, 72% of the applications under test fell victim to improper implementation of key security
features such as authentication, access control, confidentiality, cryptography, and privilege
management. With the recent attention that’s been given to breaches in confidentiality and “privacy”
violations, this statistic suggests there’s still room for improvement when it comes to effectively
implementing sound software security principles throughout the development lifecycle.

Top five vulnerability categories
The following top-level vulnerability categories reside solely within the first four kingdoms
shown in Figure 1. The percentage figure represents the proportion of applications that
contained one or more of the vulnerability categories, and a further breakdown of sub-
categories is provided for deeper insight into the specific problems observed.

41 �	hpenterprisesecurity.com/vulncat/en/vulncat/
index.html

42 �	Katrina Tsipenyuk, Brian Chess, Gary McGraw.
“Seven Pernicious Kingdoms: A Taxonomy of
Software Security Errors.” In Proceedings of
Workshop on Software Security Assurance
Tools, Techniques, and Metrics, Elizabeth Fong
ed., U.S. National Institute of Standards and
Technology (NIST) Special Publication (SP) 500-
265, February 2006.

43 �	hpenterprisesecurity.com/vulncat/en/vulncat/
index.html

Figure 4
Vulnerability category distribution by kingdom

80.4%

71.6%

56.0%
52.9%

31.5%

7.7%
2.2%

15.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Environment Security
features

Encapsulation Input
validation and
representation

Errors Code quality Time and
state

API abuse

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html

25

Report | HP 2013 cyber risk report

In today’s world of rising cyber crime attacks and the growing expectation of secure software
implementation, it is imperative to limit any opportunity to unintentionally reveal information
that may be beneficial to a malicious attacker. With 56% of the applications under test exhibiting
weaknesses to revealing information about the application, its implementation, or its users, this
is a disturbing trend that may very well be the low hanging fruit of choice for organizations to
address first in their remediation strategy. Combined with 31.5% of the applications also prone
to leak system information through poor error handling, this unfortunately only increases the
propensity of giving an attacker the upper hand.

Input validation and representation, the kingdom containing popular categories such as cross-
site scripting and SQL injection, affected 53% of the applications tested. Interestingly, in terms
of instance count, cross-site scripting and SQL injection dominated the list, coming in first and
second, respectively. However, and while cross-site scripting enters our top five list at number
four, SQL injection only occurred in 9% of the applications tested compared to 40% for cross-
site scripting. Many conclusions can be drawn about the under representation within our test
data, but finding even a single instance of SQL injection remains one of the most impactful
web application vulnerabilities. One may hopefully conclude that organizations are becoming
more cognizant about SQL injection and proactively eliminating the root causes. The reality is
that even after a decade and a half SQL injection still persists and thorough application testing
remains a prerequisite.

Top five vulnerability categories
The following top-level vulnerability categories reside solely within the first four kingdoms
shown in Figure 1. The percentage figure represents the proportion of applications that
contained one or more of the vulnerability categories, and a further breakdown of sub-
categories is provided for deeper insight into the specific problems observed.

The first step in adopting a secure cookie strategy is to categorize the sensitivity of the
information contained within each cookie. Is this cookie used for maintaining an authenticated
state, or is it merely referenced for a benign user setting? Special care should be given to
limiting just how much access client-side scripts should have to cookies, as noted by 41% of
this category being attributed to not setting the HTTPOnly attribute. Related to information
sensitivity, special care should be taken on how those cookies are transmitted and how long
they remain on the user’s system.

1%

3%

4%

Cookie security: cookie not sent over SSL

Cookie security: HTTPOnly not set

Cookie Security: overly broad domain

Cookie security: persistent cookie

Cookie security: other

Cookie security: overly broad path

45,000,000.00

Cookie security

52%
41%

33%

18%

1%

2%

2%

System information leak: filename found in comments

System information leak: OPTIONS HTTP method

System information leak: cookie retrieval

System information leak: internal IP

System information leak: other

System information leak: server version

45,000,000.00

System information leak

51% 43%

37%

15%

26

Report | HP 2013 cyber risk report

Arguably one of the most prolific vulnerabilities over the past decade, cross-site scripting
stands at the top regarding the frequency in which it appears in the affected applications. While
82% of the affected applications demonstrated weaknesses to type one or “reflected” cross-
site scripting, the category with the highest impact comprises a mere 5% of the applications:
type two or “persistent” cross-site scripting. That’s not to say reflected cross-site scripting isn’t
dangerous, but at least the highest impact vulnerability isn’t in the majority.

While their ethical boundaries may differ, security professionals and malicious attackers both craft
attack strategies in a similar fashion. Mining information about the application that it freely reveals to
the observer is a key first step in their overall methodology. Limiting the amount of readily available
information the application, or it’s implementation, forces the attacker to make assumptions or search
for an easier entrypoint into your application, or preferably, to avoid it altogether and move on to
another target. Furthermore, while a single piece of information gleaned from the application may
appear insignificant alone, in combination it can become deadly. This category of vulnerabilities is
really all about good housekeeping. The goal is to make it more difficult for an attacker to learn about
your application.

As with cookie security, care must be given to classify the sensitivity of any discovered unprotected
files and directories within your application. With a combined 82%, unprotected files and directories
dominated this category; showcasing how commonsense approaches to protecting information
certainly aren’t being followed. While concrete requirements that define sensitive areas of the
application certainly should be present, ultimately it’s up to the developer to ensure that the proper
access controls are in place to protect access to both files and directories that are sensitive in nature.

2%

3%

3%

Access control: unprotected file

Access control: unprotected directory

Access control: missing authentication

Access control: information disclosure

Access control: other

Access control: unprotected WSDL file

45,000,000.00

Access control

49% 43%

39%

10%

0%

1%

5%

Cross-site scripting: DOM

Cross-site scripting: reflected

Cross-site scripting: FlashVars

Cross-site scripting: persistent

Cross-site scripting: poor validation

45,000,000.00

Cross-site scripting

40%

82%

12%

Transport layer protection: SSL policy enforcement issue

Transport layer protection: unencrypted login form

Transport layer protection: weak SSL protocol detected

Transport layer protection: insecure transmission

Transport layer protection: other

Transport layer protection: weak SSL cipher detected

45,000,000.00

Transport layer protection

38%

31%

25%

9%

9%

16%

10%

27

Report | HP 2013 cyber risk report

44 �	hpenterprisesecurity.com/collateral/
whitepaper/HP2012CyberRiskReport_0213.pdf

Rounding out the top five vulnerability categories is another example of threats to
confidentiality through poorly implemented or missing encryption. It’s shocking to see 31% of
this category attributed to unencrypted login forms; an obvious protection point for sensitive
authentication information. Of course, just because you have SSL enabled doesn’t mean it’s
done right, as is evidenced by errors in protocol or cipher selection in a combined 19% of the
affected applications.

Although absent from the top five vulnerabilities, cross-frame scripting remains an important
enabling attack vector that was present in 33.5% of the applications tested. As a case study
analysis in last year’s HP Top Cyber Security Risks Report,44 cross-frame scripting was shown
to be pervasive in sites across the Internet and remains significantly present within our current
test data.

Open source case studies

Open source is an essential part of the enterprise environment, both as stand-alone
applications and as components of commercial software. The same issues seen in software
analyzed by HP Fortify on Demand are also found in open source applications.

A recent survey we performed of some popular open source applications discovered the
following significant vulnerabilities predominant in the Fortify on Demand Data. These
vulnerabilities are characterized by three kingdoms from the Fortify taxonomy.

Security features—cookie security: cookies not sent over SSL

public static void addCookie(HttpServletResponse
httpServletResponse, int cookieExpiration, String cookieKey,
String cookieValue) {

 Cookie cookie = new Cookie(cookieKey, cookieValue);

 cookie.setMaxAge(cookieExpiration);

 httpServletResponse.addCookie(cookie);

 }

A failure to use the setSecure method of the created cookie allows it to be transported in
plain text. In this application, cookies were used to remember logged-in users. This is a
simple error that allows attackers to easily impersonate users.

Solution: Configuring cookies to be sent over SSL would make such attacks more difficult.

Encapsulation—system information leak

<div align=”left”><font face=”Verdana, Arial, Helvetica, sans-
serif” size=”2”><%=UtilFormatOut.replaceString(errorMsg, “\n”,
“
”)%></div>

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.hpenterprisesecurity.com/collateral/whitepaper/HP2012CyberRiskReport_0213.pdf
http://www.hpenterprisesecurity.com/collateral/whitepaper/HP2012CyberRiskReport_0213.pdf

28

In another open source web application, we find a default error.jsp page that writes
full error messages to the page. The same application wrote sensitive information to
exceptions such as stack traces, the servlet context path, and information about failed
attempts to load resources. This is a classic example of how sensitive information is
accidentally exposed.

Solution: Developers should be careful to provide the minimum amount of error
information needed to investigate an issue in a web response.

Input validation and representation—path manipulation
} else if (DELETE_UPLOAD_FILES.equals(action)) {

String[] filesToDelete = httpServletRequest.
getParameterValues(FILE_TO_DELETE);

…

}

In this application, an unvalidated request parameter specifies a file to be deleted by the
server. This does require the user to be logged in as an administrator, but the intended
purpose of the code is to allow the user to delete a specified set of files, not arbitrary files.

Solution: All user-supplied parameters should be validated before being used to specify
a file name or path.

Report | HP 2013 cyber risk report

For more information about the risks of using open source and a process to use for mitigating
these risks, see our Threat Briefing No. 9.

http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/HP-Security-Research-Threat-Intelligence-Briefing-Episode-9/ba-p/6310095#.Ut_dd2Tna2w

29

Report | HP 2013 cyber risk report

45 �	reuters.com/article/2013/01/11/us-java-
security-idUSBRE90A0S32013011

Java every-days

In January 2013, the U.S. Department of Homeland Security urged users to uninstall Oracle’s
Java as vulnerabilities in the software were being actively and broadly targeted by attackers
in order to compromise computers and install malware in the wild.45 The ZDI team found itself
at the coal-face of Java vulnerability research and reflects on its experience by providing the
following detailed analysis of the attack surface created by the Java architecture, the root
causes of the vulnerabilities involved, and information on how these vulnerabilities are being
exploited in the wild.

Introduction
HP’s Zero Day Initiative (ZDI), the world’s largest vendor-agnostic bug bounty program,
experienced a surge in submissions for Oracle’s Java platform in late 2012 and early 2013. It
became a fairly regular occurrence for several new 0-day Java vulnerabilities to show up in the
queue over a seven-day span. One of the more interesting trends revealed that ZDI researchers
were not going after a single vulnerability class. At the time, the industry focused on sandbox
bypasses and cases were arriving into the ZDI that took advantage of that weakness, but
submissions identifying memory corruption vulnerabilities were still just as common. This
prompted the following questions:

1.	What is the most common vulnerability type in Java?

2.	What part of the architecture has had the most vulnerabilities reported against it?

3.	What part of the architecture produces the most severe vulnerabilities?

4.	How do the vulnerabilities being used in the threat landscape map to the ZDI submissions?

5.	How is Oracle responding to this increased pressure?

These questions continued to be discussed internally when exploit kit authors began including
several new Java vulnerabilities during the first months of 2013. The targeted attacks against
large software vendors and multiple 0-day vulnerabilities demonstrated at Pwn2Own were the
final straw. We narrowed the focus for this paper to modern-day vulnerabilities and limited the
scope to issues patched between 2011 and 2013. In total, we performed a root cause analysis
on over 120 unique Java vulnerabilities including the entire ZDI dataset; major penetration
testing tools; and exploit kits on the market today. We also included six 0-day vulnerabilities
that have not yet been patched by Oracle but are part of the ZDI dataset. We reviewed and
derived metrics about the threat landscape from a dataset that included 52,000 unique Java
malware samples.

The ultimate goal of this analysis was to expose the actual attack surface that Oracle’s Java
brings to the table by taking an in-depth look at the most common vulnerability types, and
examining the specific parts of the attack surface being taken advantage of by attackers.

The takeaway

Attackers are significantly escalating their
exploitation of Java by simultaneously targeting
multiple CVEs and being increasingly successful
at compromising victim’s computers. The real
risk posed to organizations and individuals by
attackers exploiting Java vulnerabilities to make
compromises should not be understated. Make
applying updates to address vulnerabilities in Java
a priority for your organization and ensure that
they are applied as soon as they become available.
Consider reducing your organization’s attack
surface by removing Java from user’s computers
within your organization that do not require this
technology for their role.

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.reuters.com/article/2013/01/11/us-java-security-idUSBRE90A0S32013011
http://www.reuters.com/article/2013/01/11/us-java-security-idUSBRE90A0S32013011

30

Report | HP 2013 cyber risk report

Oracle Java’s footprint and software architecture
Oracle, quite famously, highlights the install base of Java via a splash screen during the installation
of the product. For the software development community, a 3 billion device install base is a huge
milestone. Alternatively for the security community, this constitutes a big red bull’s eye.

Pair this with the statistics released from WebSense46 that 93% of the Java install base is not
running the latest patch a month after its release, or sometimes even a year after its release,
these numbers become even more concerning. With such a broad install base and users
running outdated software, the potential return on investment for attackers weaponizing Java
vulnerabilities is considerable. Based on the numbers from Contagio,47 exploit kit authors are
required to include an average of 2+ Java exploits just to stay competitive with the other kits
available on the market.

From the development perspective, the Java framework is powerful. It includes a large set of
built-in capabilities to aid in the more complicated development tasks. As you can see in the
conceptual diagram48 below, the framework is made up of over 50 sub-components that bring
different functionality to the table for developers. This includes capabilities to render a user
interface, process complex fonts and graphics, and consume the most common web service
protocols. Each sub-component provides a unique set of application programming interfaces
(APIs) that developers can use to quickly extend their application.

46 �	http://community.websense.com/blogs/
securitylabs/archive/2013/06/04/majority-of-
users-still-vulnerable-to-java-exploits.aspx

47 �	http://contagiodump.blogspot.ca/2010/06/
overview-of-exploit-packs-update.html

48 �	http://docs.oracle.com/javase/7/docs/

Figure 5
Java 7 conceptual diagram

Java Language

Java Web Start Applet / Java Plug-in

JavaFX

Swing

Drag and Drop

Java 2D

Input Methods

AWT

Image I/O

Accessibility

Print Service Sound

IDL JDBC JNDI RMI RMI-IIOP Scripting

Beans

JNI

Security

Int’l Support

Math

Serialization

Input/Output

Networking

Extension Mechanism

JMX

Override Mechanism
Java SE

API

JDK

JRE

XML JAXP

lang and util

Logging

Reflection

Collections

Management

Regular Expressions

Concurrency Utilities

Preferences API

Versioning

JAR

Ref Objects

InstrumentationZip

Java HotSpot Client and Server VM

java

JConsole

IDL

javap

Int’l

Scripting

JPDA

RMI

JVM TI Web Services

javac

Java VisualVM

Deploy

javadoc

Java DB

Monitoring

jar

Security

Troubleshoot

Java Language

Tools &
Tool APIs

Deployment

User Interface
Toolkits

Integration
Libraries

Other Base
Libraries

lang and util
Base Libraries

Java Virtual Machine

Applications can be written once and run on a multitude of platforms. Due to these factors,
it is no surprise that Java has a widespread adoption in the development community. Java is
also quite popular in the financial marketplace and recently made major inroads in the mobile
device space. For all of these reasons, the security community has started to focus its efforts on
analyzing and auditing this popular application.

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://community.websense.com/blogs/securitylabs/archive/2013/06/04/majority-of-users-still-vulnerable-to-java-exploits.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/06/04/majority-of-users-still-vulnerable-to-java-exploits.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/06/04/majority-of-users-still-vulnerable-to-java-exploits.aspx
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://contagiodump.blogspot.ca/2010/06/overview-of-exploit-packs-update.html
http://contagiodump.blogspot.ca/2010/06/overview-of-exploit-packs-update.html
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://docs.oracle.com/javase/7/docs/

31

Report | HP 2013 cyber risk report

49 �	oracle.com/technetwork/topics/security/
alerts-086861.html

50 �	oracle.com/technetwork/topics/security/
javacpuapr2013-1928497.html

51 �	oracle.com/technetwork/topics/security/
javacpufeb2013-1841061.html

Vulnerability trending and attack surface
Since early 2011, Oracle has patched almost 300 remotely exploitable vulnerabilities in Java.
These issues range from the classic stack-based buffer overflow to the more complicated
sandbox bypass vulnerabilities that require the attacker to chain a series of weaknesses to disable
the SecurityManager. Every year the number of vulnerabilities being fixed has increased with just
over 50 issues patched in all of 2011 to over 180 in 2013.49 Researchers continue to discover new
ways to find holes in the various sub-components of Java and bypass the security architecture.

Vulnerability statistics 2011–2013

Oracle Java patch statistics
Oracle maintains a consistent patch schedule with major security updates released
approximately once every three to four months. Along with the software update, it releases
a good amount of metadata for the vulnerabilities being fixed. This includes the CVE tracking
identifier, a CVSS score, whether it is remotely exploitable, and the location of the vulnerability
in the Java architecture. In the example below, CVE-2013-238350 seems to be a particularly
nasty vulnerability in Java’s 2D sub-component.

This information is useful to application developers when trying to quickly determine whether a
particular vulnerability affects a component that their application relies on. It is also extremely
useful to security researchers that are looking for the components in the architecture that
contain a high number of security-related issues. Researchers can focus their attention on
these areas, as they know their work will likely uncover similar issues.

Oracle’s patch information over the last three years provides insights into the vulnerabilities
being discovered. We observed that only three times in the last three years had a sub-component
amassed a double-digit CVE count in a single patch. In February 2013, the Deployment and JavaFX
sub-components had a CVE count of 10 and 12 respectively. The Deployment sub-component
was again ravaged with a 12 CVE hit count in October 2013. Interestingly enough, all of these large
fixes occurred in the 201351 patch releases (February and October). Oracle has also corrected
security vulnerabilities in the 2D and Deployment sub-components in each of the patch releases
since the beginning of 2011 (not including the security alert releases).

CVE# CVE-2013-2383

Component JAVA runtime environment

Protocol Multiple

Subcomponent 2D

Remote exploit without
authentication

Yes

CVSS Version 2.0 Risk
(see Risk Matrix Definitions)

Base score Access vector Access complexity Authentication Confidentiality Integrity Availability

10.0 Network Low None Complete Complete Complete

Supported versions affected 7 Update 17 and before, 6 update 43 and before, 5.0 update 41 and before

Notes See note 1

Figure 6
Oracle risk metric

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.oracle.com/technetwork/topics/security/javacpuapr2013-1928497.html
http://www.oracle.com/technetwork/topics/security/javacpuapr2013-1928497.html
http://www.oracle.com/technetwork/topics/security/javacpufeb2013-1841061.html

32

Report | HP 2013 cyber risk report

52 �	oracle.com/technetwork/topics/security/
alerts-086861.html

53 �	oracle.com/technetwork/topics/security/
alerts-086861.html

54 �	oracle.com/technetwork/topics/security/
alerts-086861.html

Looking at the last three years of patch information, the following sub-components account for
half of the remotely exploitable vulnerabilities in Java:52

Zero Day Initiative (ZDI) submission trends
Many of the researchers working with ZDI take advantage of these statistics and watch for
vulnerabilities being patched in specific sub-components. Our researchers typically focus on
auditing one or two sub-components and become proficient, yielding new discoveries using a
combination of techniques—some mine the patches to understand the weakness pattern and
then hunt the attack surface for that pattern. Some simply look for nearby neighbors where
Oracle engineers failed to find the same type of issue in the sub-components. Others look for
deficiencies in the patch and re-submit those.

Ranking these sub-components by the number of unique CVEs, we discover that the
Deployment sub-component is the most patched part of the architecture with almost 60 issues.
That being said, the 2D sub-component contains the most severe vulnerabilities on average. It
could be argued that the 2D sub-component is the riskiest component in the architecture due to
the combination of its ranking and average vulnerability severity.

The average CVSS score for a remotely exploitable Java vulnerability is 7.57, which classifies
them as High in severity.53 Almost 50% of the issues fixed by the patches are CVSS 9.0 or higher
with over 80 of those occurring in 2013.54 If we look at what is being targeted year over year, we
see that the security research community was focusing on the following sub-components:

Rank Sub-component Average CVSS

1 Deployment 7.31

2 2D 9.12

3 Libraries 7.29

4 JavaFX 8.63

5 AWT 7.49

Figure 7
Most vulnerable sub-components

Year Most targeted sub-components

2011 1. Deployment
2. Sound
3. 2D

2012 1. Deployment
2. 2D and libraries
3. Beans and JMX

2013 1. Deployment
2. 2D and libraries
3. JavaFX

Figure 8
Most targeted Java sub-components

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html

33

Report | HP 2013 cyber risk report

55 �	security-explorations.com/en/SE-2012-01.html

Analyzing the submission trends we observed that the sub-components our researchers were
targeting mapped to some of the buggiest parts of the Java architecture. Specifically, our
researchers focused on the following sub-components most frequently:

1.	2D

2.	Libraries

3.	JavaFX

4.	Sound

5.	Deployment

Of particular note, they focus on the sub-components that produce the highest CVSS scores
including 2D and JavaFX. Over the last three years, the average CVSS score for a ZDI submission
was 9.38 and the researchers working through the program had accounted for a fourth of Java’s
vulnerabilities with CVSS score of 9.0 or higher.

Vulnerability classes

Insights into vulnerability classes (CWE)
By intersecting publicly available vulnerability data with cases submitted to ZDI, we can shed
light on what the most popular vulnerability classes are in the Java architecture. Luckily for
vulnerability researchers, the architecture is susceptible to every common software weakness
from the classic buffer overflow to command injection.

ZDI’s submission rate for Java vulnerabilities maintained a consistent rate of approximately
seven new vulnerabilities a quarter for the last three years. It is not surprising that the
submission rate increased dramatically over the last three quarters with a high of 33 new
vulnerabilities in one quarter alone. There are good explanations for this increased activity:

•	High profile 0-day vulnerabilities drove researchers to look for related issues.

•	Security Exploration’s research55 highlighted sandbox bypasses due to unsafe reflection.

Increased submission rates resulted in the largest patches released by Oracle for Java, with over
50 vulnerabilities fixed in the February and October 2013 patch cycles.

Figure 9
ZDI submission rate

0

5

10

15

20

25

30

35

Q1
2011

Q2
2011

Q3
2011

Q4
2011

Q1
2012

Q2
2012

Q3
2012

Q4
2012

Q1
2012

Q2
2012

Q3
2012

Q4
2012

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.security-explorations.com/en/SE-2012-01.html

34

Report | HP 2013 cyber risk report

CWE-265 breakdown and historical timeline
The most prevalent issue in the framework is the ability to bypass the sandbox and execute
arbitrary code on the host machine. About half of the vulnerabilities in the sample set had this
designation. Not only was it popular with the ZDI researchers, but attackers also seemed to pick
up on this weakness with nine CVEs related to the various styles of sandbox bypasses under
active exploitation across the last three years. In early 2012, Security Explorations highlighted
the sandbox bypass issue with the release of its research paper focused on this weakness.

ZDI researchers discovered these vulnerability types as early as April. As previously discussed,
the unsafe reflection style of sandbox bypass is the most common technique being utilized
with about 60% of the CWE-265 market share. CWE-470 Unsafe Reflection is also becoming the
vector of choice for exploit kit authors with three of the most recent active targeted CVEs falling
into this category (CVE-2012-5076, CVE-2013-0422, and CVE-2013-431).

There is a good reason for the focus on these vulnerability types in exploit kits and targeted
attacks. They do not require the attacker to exploit memory corruption style vulnerabilities or
bypass modern operating system mitigation techniques like data execution prevention (DEP)
and address space layout randomization (ASLR). They do not need to write the exploit to a
specific patch level of the operating system or application. This, arguably, takes away some of
the challenges in place with other vulnerability classes and provides the attacker a “write once,
own everywhere” exploit. In the end, focusing on discovering and productizing these types of
issues gives the attacker a high return on investment.

Figure 10
Common weaknesses

CWE-122:
Heap-based
buffer overflow

CWE-121:
Stack-based
buffer overflow

CWE-787:
Out-of-bounds
write

CWE-125:
Out-of-bounds
read

CWE-114:
Process
control

CWE-78:
OS command
injection

CWE-416:
Use-after-free

CWE-265:
Privilege/
sandbox issues

CWE-120:
Buffer overflow

CWE-119:
Improper
restrictions on
buffer operations

CWE-822:
Untrusted pointer
dereference

CWE-190:
Integer overflow

Other less
common CWEs

CWE-470:
Unsafe
reflection

CWE-272:
Least privilege
violation

CWE-843: Type
confusion

Figure 11
Timeline of ZDI submission vs. actively exploited CVEs for CWE-265

4

8

CVE-2011-3544

CVE-2012-0507

CVE-2012-1723

CVE-2012-4681

CVE-2012-5076

CVE-2013-0422

CVE-2013-0431

2011 2012 2013

Figure 12
CWE-265 sub-category breakdown

CWE-272
Least Privilege Violation

CWE-470
Unsafe Reflection

CWE-843
Least Privilege Violation

45,000,000.00

35

Report | HP 2013 cyber risk report

Extrapolating sub-component weaknesses

Vulnerability class to sub-component mapping
You need to understand which packages make up the most vulnerable sub-components to fully
grasp Java’s attack surface. A sub-component’s packages and classes can also be extremely
useful when trying to analyze a security update from Oracle as a researcher can greatly reduce
the scope of the code that needs to be audited to find the patched vulnerability.

Top seven vulnerability classes in the Java architecture

Based on our available information the top vulnerability classes and affected sub-components
can be identified and targeted by the research community. The order of these issues can be
further tuned by utilizing the sub-categories generated for the major weaknesses in the Java
architecture. The table below provides a more accurate view into Java’s attack surface.

Rank Common weakness enumeration Sub-category Sub-components

1 CWE-265: Privilege/
Sandbox Issues

CWE-470: Unsafe Reflection AWT
Beans
HotSpot
JAXP
JAX-WS
JMX
Libraries

2 CWE-265: Privilege/
Sandbox Issues

CWE-272: Least
Privilege Violation

CORBA
JMX
Libraries
Scripting
Sound

3 CWE-122: Heap-based
Buffer Overflow

N/A 2D
JavaFX

4 CWE-787: Out-of-bounds Write N/A 2D
Sound

5 CWE-822: Untrusted
Pointer Dereference

N/A JavaFX

6 CWE-122: Heap-based
Buffer Overflow

CWE-190: Integer Overflow 2D

7 CWE-265: Privilege/
Sandbox Issues

CWE-843: Type Confusion AWT
Concurrency
Deserialization
Hotspot
Libraries
Scripting

Figure 13
Top seven vulnerability classes in Java

36

Report | HP 2013 cyber risk report

It is interesting that this timeline mirrors the increase in vulnerability discoveries by the external
community over the last 12 months. Starting in August, the number of unique malware instances
quickly shot up to close to the 3000 mark. More surprising is the huge jump in unique instances
that begin in December and January of over 6000 against just 10 of the most common CVEs. More
than half of those unique instances were labeled as CVE-2012-1723, which is a type confusion
vulnerability in the HotSpot sub-component. January 2013 also saw a large increase in the use of
CVE-2012-0507, another type confusion vulnerability in the Concurrency sub-component.

Antivirus engines do not always label samples correctly so the exact percentage of the unique
samples per CVE inherently includes a small margin for error. As stated at the beginning of this
paper we focus on the time period of 2011 to 2013. This graph is limited to the active CVEs during
this time. This scope may have resulted in a less than accurate representation of activity in early
2011. The key takeaway is that attackers are significantly upping their game by targeting more
CVEs than ever and are increasingly successful at getting their exploits onto victim machines.

Leveraging sub-component weaknesses
Exploit kit authors have jumped on the Java bandwagon offering a variety of exploits that
leverage different vulnerability types. As stated previously, the kits on average need to offer 2+
Java exploits just to stay competitive in this market. Aligning this with the recent attacks using
0-day vulnerabilities, we derive unique insights into which software weaknesses are actually
being leveraged in the threat landscape.

To further our understanding of the landscape, ReversingLabs provided us with a set of 87,000
unique Java malware samples. By looking at the scanning results of multiple anti-malware
engines and ReversingLabs proprietary logic, these samples were classified into a set of
categories based on the CVE they utilized. From this list, it was clear that 50% of malware
classified as exploits carry a CVE identification, and by looking at last seen data, many new CVE-
attributed exploits persist years after the vulnerability they target is publicly disclosed. This
provided us with a list of the most common weaponized Java vulnerabilities over the last three
years. In the graph below, the last three years of unique (by MD5 hash) CVE-attributed Java
malware samples per month are shown.

Figure 14
Actively exploited CVEs

0

1000

2000

3000

4000

5000

6000

7000

9000

10,000

8000

Feb-11 Apr-11 Jun-11 Aug-11 Oct-11 Dec-11 Feb-12 Apr-12 Jun-12 Aug-12 Oct-12 Dec-12 Feb-13 Apr-13 Jun-13 Aug-13 Oct-13

CVE-2010-3552

CVE-2010-3563

CVE-2010-4452

CVE-2010-4465

CVE-2011-3521

CVE-2011-3544

CVE-2012-0507

CVE-2012-1713

CVE-2012-1723

CVE-2012-3213

CVE-2012-4681

CVE-2012-5076

CVE-2013-0422

CVE-2013-0431

CVE-2013-1480

CVE-2013-1488

CVE-2013-1493

CVE-2013-2423

CVE-2013-2460

CVE-2013-2463

CVE-2013-2465

CVE-2013-2471

37

Report | HP 2013 cyber risk report

56 �	http://contagiodump.blogspot.ca/2010/06/
overview-of-exploit-packs-update.html

Threat landscape

Aligning component weaknesses to attacks
As our goal is to understand the weaknesses at play in the landscape, we compared the list
of actively targeted CVEs to the CVEs available through penetration testing tools and exploit
kits tracked by Contagio.56 By far, the most common vulnerability type for attack tools is the
sandbox bypass using unsafe reflection to gain code execution.

Comparing the most popular software weakness across the attack tools to the most patched
vulnerabilities, we see the following:

•	Most common weakness included in attack tools

1.	CWE-265 Privilege / Sandbox Issues due to CWE-470 Unsafe Reflection

2.	CWE-265 Privilege / Sandbox Issues due to CWE-843 Type Confusion

3.	CWE-122 Heap-based Buffer Overflow

4.	4CWE-265 Privilege / Sandbox Issues due to CWE-272 Least Privilege Violation

•	Java’s most patched weakness

5.	CWE-265 Privilege / Sandbox Issues due to CWE-470 Unsafe Reflection

6.	CWE-265 Privilege / Sandbox Issues due to CWE-272 Least Privilege Violation

7.	 CWE-122 Heap-based Buffer Overflow

8.	CWE-787: Out-of-bounds Write

One intriguing occurrence is that the type confusion style of sandbox bypass switches place
in the ranks with the least privilege style of sandbox bypass when it came to inclusion in the
attack tools. The next logical question is: Which weakness is used more often in the exploit kits?
The chart below describes the utilization breakdown for each software weakness across our
malware sample set.

The clear “winner” is the type confusion style of sandbox bypass vulnerability with over half of the
unique Java malware samples. Heap-based buffer overflow and out-of-band write vulnerabilities
barely show up on the diagram due to the sheer volume of unique samples of sandbox issues.

Figure 15
CWEs utilized by attackers

Contestant CVE CWE utilized

James Forshaw CVE-2013-1488 CWE-265: Privilege/ Sandbox Issues CWE-272: Least Privilege Violation

Joshua Drake CVE-2013-1491 CWE-787: Out-of-bounds Write CWE-125: Out-of-bounds Read

VUPEN Security CVE-2013-0402 CWE-122: Heap-based Buffer Overflow

Ben Murphy CVE-2013-0401 CWE-265: Privilege/ Sandbox Issues CWE-470: Unsafe Reflection

Figure 16
CWEs targeted by Pwn2Own contestants

CWE-843:
Type Confusion

CWE-470:
Unsafe Reflection

CWE-272: Least
Privilege Violation

CWE-122: Heap-based
Buffer Overflow

CWE-787:
Out-of-Bounds Write

45,000,000.00

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml

38

Java conclusions

Oracle has weathered quite the storm over the last eight months. Attackers continually discover
and expose weaknesses in the framework and leverage those vulnerabilities to compromise
machines. Exploit kit authors are upping the number of Java vulnerabilities they are including in
their releases to stay competitive. The external research community is also focusing on the Java
framework. Zero Day Initiative researchers continually identify a large number of vulnerabilities
resulting in Oracle releasing some of its biggest security patches to date.

Based on this analysis, we have solid evidence that the sandbox bypass due to unsafe reflection
is the most prolific issue in the framework but the sandbox bypass due to type confusion is the
most exploited vulnerability type. Heap-based buffer overflows in the 2D component produce
some of the most severe vulnerabilities but are not commonly used by the exploit community.
Interestingly enough, each of the sub-components in the architecture appears to be vulnerable
only to a subset of vulnerability types. With this information, researchers will be able to focus
their efforts while auditing the sub-components to increase the chance of discovering some
fresh 0-days.

We look forward to analyzing the next round of Java issues submitted to the Zero Day Initiative.
We hope this information helps you to better understand the attack surface presented by Java
and make the appropriate decisions regarding how it is used and how its updates are prioritized
and managed in your organization.

Learn more at
zerodayinitiative.com
hp.com/go/hpsr

Report | HP 2013 cyber risk report

Pwn2Own 2013

In order to highlight the activity in the landscape,
we expanded the scope of the Pwn2Own contest
to include the browser plugins: Java, Flash, and
Reader. When the contest launched, everyone
seemed to be focused on the unsafe reflection
style of the sandbox bypass vulnerability so
our expectation was that we would only receive
those types of bugs at the contest. In fact, our
contestants leveraged four unique software
weaknesses in order to win the prize money
with these weaknesses including the top four
vulnerability classes for Java defined earlier
in the paper.

http://www.zerodayinitiative.com
http://www.hp.com/go/hpsr

39

Report | HP 2013 cyber risk report

57 �	http://english.yonhapnews.co.kr/news/2013/03/
20/0200000000AEN20130320007951315.HTML

58 �	http://arstechnica.com/tech-policy/2013/03/
networks-of-south-korean-banks-
broadcasters-hit-in-cyber-attack/

59 �	informationweek.com/security/attacks/
north-korea-behind-bank-malware-south-
ko/240152644

South Korean case study—a
glimpse into the future and
lessons on the nature of
targeted attacks

In one of the biggest malware news stories of last year, on 20 March 2013, in a timed and
coordinated attack, a malware payload was executed on computers belonging to a number of
targeted businesses and organizations in South Korea, effectively crippling them for a short time.
The attack targeted computers on networks belonging to several major banks—Shinhan Bank,
Jeju, and Nonghyup, and television networks—YTN, MBC, and KBS (YonHap News Agency, 2013).57
The effect of this attack was to take these networks offline and interrupt broadcasts and the normal
operation of online and mobile banking apps and ATMs (ArsTechnica, 2013).58 Some sources reported
that the number of computers affected in the attack was around 48,000 (InformationWeek, 2013).59

This attack provides an interesting case study that allows us to see into the future to some degree.
As one of the most wired countries in the world, the attacks in South Korea in 2013 provide some
valuable lessons as we move in a similar direction. This case study provides a detailed analysis of
the malware involved and discusses the possible security implications should this type of attack
occur in your organization. We include advice on how to possibly protect your organization from
this type of attack and steps you can take to remediate or limit the amount of damage that may be
suffered as a consequence of a similar targeted compromise.

As we’ll discover during the course of our analysis, there are some key lessons to be learned
from the experience of the affected South Korean entities that can be applied to the broader
understanding and application of security. These lessons reflect the changing nature of risk in
light of well-resourced, financially motivated malicious actors in the context of an increasingly
ubiquitous Internet.

The takeaway

As we discovered in the course of this analysis,
even though the malware involved in this particular
attack was not that sophisticated, it was still good
enough to compromise the networks of several
organizations and deliver a damaging payload
that caused malicious damage and significant
interruptions to normal function. The greatest
lesson you can learn from this is that there isn’t a
single path to take to protect yourself and your vital
business assets from threats. You need to take an
approach that considers and prioritizes the value
of your assets, understands the full attack surface,
and realizes, most importantly, that security is a
continuous and escalating process of information
gathering, sharing, monitoring, and response.

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://english.yonhapnews.co.kr/news/2013/03/20/0200000000AEN20130320007951315.HTML
http://english.yonhapnews.co.kr/news/2013/03/20/0200000000AEN20130320007951315.HTML
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://arstechnica.com/tech-policy/2013/03/networks-of-south-korean-banks-broadcasters-hit-in-cyber-attack/
http://arstechnica.com/tech-policy/2013/03/networks-of-south-korean-banks-broadcasters-hit-in-cyber-attack/
http://arstechnica.com/tech-policy/2013/03/networks-of-south-korean-banks-broadcasters-hit-in-cyber-attack/
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.informationweek.com/security/attacks/north-korea-behind-bank-malware-south-ko/240152644
http://www.informationweek.com/security/attacks/north-korea-behind-bank-malware-south-ko/240152644
http://www.informationweek.com/security/attacks/north-korea-behind-bank-malware-south-ko/240152644

40

Report | HP 2013 cyber risk report

60 �	reuters.com/article/2011/06/14/us-cyber-
south-korea-idUSTRE75D19P20110614

61 �	princeton.edu/~achaney/tmve/wiki100k/docs/
Economy_of_South_Korea.html

62 �	koreaherald.com/view.
php?ud=20130719000708

63 �	http://english.yonhapnews.co.kr/news/2013/03/
20/0200000000AEN20130320007951315.HTML

64 �	reuters.com/article/2011/07/28/us-hackers-
attack-idUSTRE76R19M20110728

65 �	databreaches.net/hyundai-capital-in-south-
korea-to-notify-420000-customers-of-data-
breach-financial-watchdog-opens-investigation/

66 �	reuters.com/article/2011/07/06/us-korea-
cyberattack-idUSTRE76479M20110706

67 �	reuters.com/article/2011/11/26/us-korea-
hacking-nexon-idUSTRE7AP09H20111126

68 �	koreaherald.com/view.
php?ud=20130719000708

69 �	reuters.com/article/2013/07/16/net-us-korea-
cyber-idUSBRE96F0A920130716

Background
These attacks were not necessarily a new development for South Korea, which has experienced
a number of notable cyber attacks since 2008. As an early adopter of Internet technology,
South Korea is especially vulnerable to cyber attack as one of the most wired countries in the
world, with figures from 2011 showing that more than 95% of households have permanent
Internet access (Reuters, 2011).60

There are other economic and rather obvious political features that make South Korea a target
for types of cyber crime or espionage. South Korea’s strong economy and focus on industries
where IP is critical makes it an attractive target for those so motivated—not to mention the
strong competition that exists in these markets as an additional impetus. South Koreans enjoy a
high standard of living compared to most of Asia. It has Asia’s fourth largest economy and is the
15th largest in the world (by nominal GDP).61

While not a comprehensive list, South Korea has recorded multiple attacks in recent years:

January
Hackers steal personal data
of approximately 18.6 million
users from online action site
(The Korea Herald, 2013)62

July
Over 20 websites in U.S. and
South Korea are targeted by
DDoS on Independence day
(Reuters, 2009)63

November
Nexus Korea Corp is hacked to
expose the personal details of
over 13 million online gamers
(Reuters, 2009)67

March 4, 2011
Over 40 websites attacked and taken
offline by DDoS. Zombies from attack
contained a self-destructive payload to
hide the attacker’s trackers from
investigators (Reuters, 2011)64

May and July
The personal data of 4 million
and 8.7 million users stolen
from EBS and KT respectively
(The Korea Herald, 2013)68

April
Hyundai Capital
is hacked to expose
the personal details
of over 420,000 of
its customers
(DataBreaches)65

July
Hackers from China
are reported to have
accessed the personal
information of over 35M
users in South Korea
(Reuters, 2011)66

March and June
After March attacks, more attacks
occurred on June 25, coinciding
with the 63rd anniversary of the
Korean war (Reuters, 2013)69

2008 2009 2010 2011 2012 2013

The malware
As is typical for today’s malware’s modus operandi, these attacks were carried out using several
different malware components. There were two main components to the attack that have been
highlighted by several sources. These components include a Trojan dropper, which was used to
deliver the wiper component, and the wiper component itself.

We do not have sufficient detail to state anything categorical regarding the nature of the initial
compromise. However, it would be reasonable to suggest that the organizations were most
likely initially compromised by attackers exploiting vulnerabilities in either the organization’s
technology or people (or a combination of the two). Spear-phishing and vulnerability exploits
are commonly used in this context to make an initial point of access that can then be used by the
attacker in furtherance of the attack. Publicly available information suggests that the outcome of
the initial compromise was the installation of a remote access Trojan, possibly via spear phishing
or watering hole attack, which was then used to install the Trojan dropper component.

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.reuters.com/article/2011/06/14/us-cyber-south-korea-idUSTRE75D19P20110614
http://www.reuters.com/article/2011/06/14/us-cyber-south-korea-idUSTRE75D19P20110614
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Economy_of_South_Korea.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Economy_of_South_Korea.html
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.koreaherald.com/view.php?ud=20130719000708
http://www.koreaherald.com/view.php?ud=20130719000708
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://english.yonhapnews.co.kr/news/2013/03/20/0200000000AEN20130320007951315.HTML
http://english.yonhapnews.co.kr/news/2013/03/20/0200000000AEN20130320007951315.HTML
http://www.reuters.com/article/2011/07/28/us-hackers-attack-idUSTRE76R19M20110728
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.databreaches.net/hyundai-capital-in-south-korea-to-notify-420000-customers-of-data-breach-financial-watchdog-opens-investigation/
http://www.databreaches.net/hyundai-capital-in-south-korea-to-notify-420000-customers-of-data-breach-financial-watchdog-opens-investigation/
http://www.databreaches.net/hyundai-capital-in-south-korea-to-notify-420000-customers-of-data-breach-financial-watchdog-opens-investigation/
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.reuters.com/article/2011/07/06/us-korea-cyberattack-idUSTRE76479M20110706
http://www.reuters.com/article/2011/07/06/us-korea-cyberattack-idUSTRE76479M20110706
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.reuters.com/article/2011/11/26/us-korea-hacking-nexon-idUSTRE7AP09H20111126
http://www.reuters.com/article/2011/11/26/us-korea-hacking-nexon-idUSTRE7AP09H20111126
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.koreaherald.com/view.php?ud=20130719000708
http://www.koreaherald.com/view.php?ud=20130719000708
http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://www.reuters.com/article/2013/07/16/net-us-korea-cyber-idUSBRE96F0A920130716
http://www.reuters.com/article/2013/07/16/net-us-korea-cyber-idUSBRE96F0A920130716

41

Report | HP 2013 cyber risk report

The following sample was examined for this analysis:

Dropper
MD5: 9263e40d9823aecf9388b64de34eae54
Also known as/detected as :
Dropper-FDH (McAfee)
Trojan:Win32/Dembr.A (Microsoft)
Trojan.Jokra (Symantec)

The dropper component that we examined was distributed as a UPX-packed binary.

Installation
When executed it creates the following files in the affected user’s %Temp% directory:

•	alg.exe: A legitimate binary used to open SSH connections with remote servers
MD5 e45cd9052dd3dd502685dfd9aa2575ca
Size: 166,912 bytes

•	conime.exe: A legitimate binary used to open SSH connections with remote servers
MD5: 6a702342e8d9911bde134129542a045b
Size: 153,600 bytes

•	~pr1.tmp: Payload - A destructive bash script
MD5: dc789dee20087c5e1552804492b042cd
Size: 1,186 bytes
Also known as/detected as:
KillMBR-FBIA (McAfee)
Trojan:SH/Kofornix.A (Microsoft)
Trojan.Jokra (Symantec)

•	AgentBase.exe: Payload - Win32 wiper component (see details below)
MD5: db4bbdc36a78a8807ad9b15a562515c4
Size: 24,576

Payload—attempts to connect to remote servers and upload a destructive bash script

After determining the location of user profile directories on the affected computer, the malware
searches these directories for configuration files and directories that may be associated with
the connection manager clients mRemote and SecureCRT.

•	mRemote—an open source tool for centrally managing remote server connections using a GUI
(Kevin Kline, 2008).70 This tool is no longer being actively developed or supported.

•	SecureCRT—a commercial SSH and Telnet client by VanDyke Software.

If an mRemote installation is located, the dropper reads the configuration file and checks if
there’s a NODE that is defined with “Username=root”, “Protocol=SSH”, and a password that
is not blank. If those conditions are satisfied it extracts the information. The password is
decrypted after being extracted.

If a SecureCRT installation is located, the dropper extracts information from sessions that have
Username=root, Protocol=SSH and a saved password. If these conditions are satisfied, the
username, hostname, port, and password are extracted. The password is then decrypted.

After extracting these connection and server details, the dropper uses the previously dropped alg.
exe and conime.exe to attempt to connect remote servers, upload and run the bash script ~pr1.tmp.

The bash script initially checks which UNIX it is running on (of HP-UX, SunOS, Linux, or AIX) and then
attempts to wipe the /kernel, /usr /etc and /home directories, thus rendering the machine inoperative.

70 �	http://sqlmag.com/net-framework/mremote

http://static.nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2013.xml
http://sqlmag.com/net-framework/mremote

42

Report | HP 2013 cyber risk report

Win32 Wiper component

When the AgentBase.exe component is executed, it first attempts to stop the following
processes, presumably in order to evade detection:

•	pasvc.exe – policy agent from AhnLab

•	clisvc.exe – ViRobot ISMS from Hauri

It then enumerates all physical drives and overwrites the first 512 bytes with the string: “princpes”,
effectively destroying the MBR (master boot record) of the affected drive.

It continues to look for removable and fixed drives, locates the root directory on these drives, and
then attempts to delete all files and folders in this directory.

Finally, the affected computer is shut down and rebooted, although if the wiping mechanisms
were successful then the machine will not be able to boot.

Apart from the obvious, disruptive payload of these attacks against particular targets, there has
been some speculation that the ultimate goal of these attacks was sensitive data exfiltration.
There has also been significant discussion regarding the perpetrators of these attacks and
possible foreign state sponsorship. However, we do not have any further evidence beyond what
is currently publicly available in this area and therefore can make no assertions in these matters
at this time.

What can you learn, and more importantly, what can you do to protect your organization
from this type of attack?
Regardless of the identity of the attackers or their motivations, there are lessons that can be
learned from these events that can be meaningfully applied to reduce your organization’s
possible exposure to similar threats. Before we start with the specifics, let’s briefly touch on
some standard best practices for securing your organization. (Undoubtedly, you will already be
familiar with the advice that follows, but these basics continue to remain important, and are not
necessarily well implemented in practice):

•	Maintain up-to-date antivirus software.

•	Keep all operating systems and software patched against known vulnerabilities. Remove
programs and disable services not in use to reduce the possible attack surface.

•	Use strong passwords—apply policies as appropriate to ensure that your users create strong
passwords and that they are changed regularly.

•	As much as is practicable, apply the principle of least privilege to ensure that users and
processes have the minimum privileges required to perform their functions and no more. For
example, limit which users are able to download and run software.

•	Use an NGIPS to detect and block malicious or suspicious behavior on the network.

•	Use threat intelligence—subscribe to services and participate in communities that can identify
when activities are being planned that may affect your industry.

Beyond the basic best practices above, reflecting on the South Korean attacks as an example
of modern threat behavior provides us with the following additional lessons for protecting
your organization.

43

Report | HP 2013 cyber risk report

Don’t rely solely on traditional defensive perimeter security
While no one is denying the utility of more traditional, defensive perimeter security solutions,
such as antivirus and firewall (we even recommend them—see above), the nature of today’s
threats means that these types of protections, while still important, are not enough. There’s a
couple of reasons for this, but one of the main reasons is that while many new developments
have occurred in antivirus technology in recent years, in the main, most information security
technologies such as signature based security tools still rely on reactive signatures in order
to detect and remove threats. Which signatures are created, and therefore, which threats get
detected rely in the main on intelligence that is gathered from the wild. Even more modern,
proactive, behavioral signature detections rely on good intelligence on current threat behavior.

All well and good, but one of the key characters of targeted threats is their ability to get in
under the radar—their ability to compromise networks and keep a low profile in order to
avoid detection and removal, remaining in place until they perform their payload (regardless
of what the payload is)—exactly as occurred in the Korean cyber attacks. Unfortunately,
signature-based detection methods don’t know what they don’t know. The often bespoke,
advanced (or otherwise as in this case) type of threats that are most likely to compromise your
organization and steal your IP and financial and customer data are exactly the types of threats
that signature-based detection product companies are less likely to have intelligence on, and
therefore detect. You’re trying to stop attackers at the perimeter, but ensure that your network
security considerations don’t stop at the perimeter as well.

With that in mind, and considering the capture and use of authentication and session details
from SSH clients in order to access remote servers and upload a destructive script, as occurred in
this case, we recommend that you consider stronger methods of authentication for connections
to critical servers. Consider using public key as opposed to passwords (and ideally use a client that
doesn’t insecurely store or otherwise allow access to authentication and/or session details).

Remember that people are part of your organization’s perimeter too
While the initial vector for the compromise of the affected networks in these attacks remains
unknown, there are a number of different methods that are commonly used by attackers to
bypass protections and gain access to networks. In the case of targeted attacks, as these were,
one of the more common ways of making a compromise involves attacks that exploit particular
vulnerabilities. However, as opposed to exploiting vulnerabilities in hardware or software, these
attacks focus on taking advantage of and exploiting vulnerabilities in people.

These attacks fall under the broad umbrella of social engineering and commonly include, more
specifically, spear phishing and targeted drive by downloads. Both attacks utilize initial research
on the target:

•	Spear phishing is essentially a targeted phishing attack. Phishing is a process by which attackers
broadcast messages to victims, masquerading as a trusted entity (say, a bank) in order to request
and steal sensitive information (such as user names and passwords). Spear phishing occurs when
an attacker gathers specific information on an individual or group of individuals and uses that
information to construct more convincing messages that are targeted to those individuals. Security
researchers have speculated that the initial compromise in the South Korean attacks could have
been accomplished by spear phishing the targeted organizations’ employees.

•	A drive by download is where an attacker compromises a website in such a way that he is
able to install malware on visitors’ computers, often by exploiting software vulnerabilities. A
watering hole attack is one where intelligence is first gathered to determine which websites
and services might be frequented by employees of the targeted organization and then those
websites are specifically targeted for compromise and hosting malicious code.

44

Report | HP 2013 cyber risk report

Don’t forget about social media

Our examinations of the tactics used by the Syrian
Electronic Army (SEA) this year have taught us some
important lessons about the risks posed by social
media and how it contributes to the attack surface.
As we saw in our Threat Briefing no. 3, the SEA has
been proactive in its use of social media in targeting
its aims—for example, by hacking the credentials
of existing accounts in order to spread propaganda
or leak captured information, distribute malware, or
participate in phishing attacks.

Remember your social media assets and take
appropriate hardening precautions:

•	 Monitor corporate Facebook pages for
	 spam comments.

•	 Monitor Facebook and Twitter accounts
	 for compromise.

•	 Enforce strong passwords.

•	 Be particularly vigilant to monitor for
	 phishing attacks.

•	 Maintain unique passwords for each social
	 media site. Avoid re-using passwords.

•	 Monitor infrastructure for DDOS and
	 SQL injection.

•	 Monitor corporate websites for any
	 out-of-process changes.

•	 Be aware of fake sites. Double check the domain
	 and URL. If your experience with the site seems
	 to be abnormal—such as advertisements appear
	 out of the ordinary or your friend lists look
	 different—avoid from posting any information
	 until you can verify that the site is real.

Consider your people part of the possible attack surface and take steps to “harden” them as you
would your hardware and software. While you can’t patch people per se, you can educate them on:

•	Types of attack they may be targeted by

•	Identifying sensitive information assets and how those assets should be used

•	Types of information request to view with suspicion and how to recognize illegitimate
influence attempts

•	Types of behavior that might be indicative of a possible compromise

•	How to report suspicious messages or unexpected behavior

While technology, policy, and process can be used to minimize the attack surface, it is unlikely
that you would be able to completely eliminate the people from your organization. Forewarned
is forearmed—teach your people to be a security asset.

Note: While it is strongly recommended that you have an ongoing security education program
for your people, in order to back this defense up, consider both limiting users’ privileges to
ensure that they are unable to introduce unknown binaries to your network, or at least use a
reputation service that will allow for vetting of possibly malicious traffic in your environment.

Expect to be compromised
It’s an uncomfortable observation, often made by experts in the field that it is near impossible for
organizations to secure their networks completely in the face of APTs. This disquieting truth needs
to be taken into account when planning how to keep assets secure. Expect the worst and plan
appropriately. The South Korean attacks of March 2013 were only successful because the malware
controllers were able to secretly and stealthily establish a beachhead on up to 48,000 computers
from where they could launch their destructive payload. When the disk-wiping payload was
delivered on the day of the attack, the malware that downloaded was speculated to have been in
place on the affected networks for some time. This malware persisted, undetected in secret, until
the malware controllers wanted to use it to perform this damaging attack.

To that end, have tested, well-communicated, verified plans in place for when—not if—the
worst happens. At a bare minimum:

•	Perform daily backups of critical assets with storage offsite and offline and practice recovery
so if your data gets wiped (as in this particular example) you can restore it.

•	Create an emergency communications plan ready to be used if the network fails.

•	Have accessible references ready on how to restore critical systems and resources dedicated
to contingency.

•	Test your plans and documentation.

•	Isolate critical systems from other parts of the business and ensure that they can be brought
back online independently of other less-critical systems.

•	Encrypt sensitive or business-critical information (make the information unusable even if it
does get captured).

Understand that not all information and network assets are equal
During the course of investigating these attacks, an interesting fact came to light that goes
some way to explaining how the attackers were able to deliver the payload component to
so many computers in such an effective fashion. By getting hold of the credentials for an
enterprise patch management server, the attackers were able to use it to serve the malware to
multiple computers, as you would updates (Ahnlab, 2013). Systems that facilitate centralized
management functions and play a central role in establishing trust in networks are highly prized
targets of compromise and could be used to make other security controls useless. Prioritize
resources to identifying and protecting critical assets first.

45

Report | HP 2013 cyber risk report

Make security and response a continuous process
Unfortunately, the security of an organization isn’t something you can “set and forget.” An
organization’s security is accomplished, or rather, increased, through a system of continuous, at
times, escalating processes that reduce the risks of adverse outcomes created by today’s threats.

In these cyber attacks, attackers were able to bypass traditional protection measures in order
to compromise the targeted networks and persist until such time that they chose to deliver a
damaging payload. The attackers needed to accomplish a number of different steps in order to
accomplish their end goal. It is likely, that at least some of those steps or processes would appear
anomalous to the regular pattern of use or behavior of users in that particular environment.

If traditional signature detection mechanisms are not as useful, and compromise occurs, there must
still be mechanisms in place to flag aberrant behavior and respond appropriately. Do you know what’s
normal behavior on your network? Would you be able to identify meaningfully unusual behavior on
your network and respond in real time to an attack before damage, or further damage occurs?

Of course, being able to flag and respond to unusual events in real time is no small feat for
any organization, but by using continuous monitoring and gathering data that enables you to
know what’s normal and what’s not within the context of your organization you can increase
the likelihood of detecting advanced threats that have breached the perimeter before they take
hold and create more damage (possibly through malicious disruption or data exfiltration).

We also recommend that you perform active analysis of event data to detect anomalous
activities and to identify indicators of compromise that are not already known. The most
successful companies utilize a host of methods and tools that range from data visualization and
SIEM to big data solutions and data scientists leveraging custom algorithms.

Seek out credible and reliable security intelligence
It’s difficult to protect your organization and its assets unless you know your most critical
assets, what’s being targeted, and what is threatening you—how it works, its methods. You
need to know your enemy and be familiar with its current modus operandi. You can use this
intelligence to ensure that your perimeter security and ongoing monitoring are appropriately
configured for current conditions.

Having sources of accurate information that you trust and can use in this way to keep your
protections both appropriately reactive to current threats and proactive against new trends is
imperative. Ideally, partner with an authoritative source of security intelligence that captures data
from multiple sources on the threat landscape and analysis from experienced security experts.

It is very difficult if not impossible for any one entity to get a good picture of the breadth and
depth of the threat landscape. While threat information is often proprietary in some examples,
enterprises should be encouraged to share their experiences of compromise with the greater
security community and other enterprises. Often attackers use campaigns that target multiple
organizations at once—sharing information on current attacks and methods makes everyone
less vulnerable and the attackers less likely to succeed. We are stronger together.

46

Report | HP 2013 cyber risk report

Conclusions

The complexity and difficulty of securing enterprises only grows with the passage of time. But
with the right information, organizations can significantly reduce their attack surface, substantially
mitigate risks, and prevent the losses and damages associated with successful attacks. To
that end, we examined the areas that significantly contributed to the growing attack surface
in 2013—Oracle Java, mobile devices, and web software security. We provided insight into the
current vulnerability landscape and the growing market of Zero Day research describing the most
targeted software and corresponding implications to the overall threat landscape. And finally, we
examined the current state of threats to smartphones and the implications for those who plan
to develop applications for such devices. Our results reveal that securing enterprises remains a
tenuous proposition, and significant opportunities for improving security efforts exist.

The results of our analysis on vulnerability data from the HP Security Research Zero Day
Initiative demonstrate the increasing overlap in focus between researchers and adversaries
on what software to target. Put simply, researchers are keen to work collaboratively with
heavily targeted software vendors in an attempt to find, fix, and eliminate such issues from the
software before adversaries identify and add them to their arsenal leaving defenders without
a patch to secure their environment. Results also show there is room for improvement from an
operational perspective. More specifically, we continue to struggle with using risk management
techniques for patch deployment, which introduces a significant security gap—one that
software itself cannot address. Defenders must understand what software adversaries are
targeting and leverage that information to prioritize their patch management efforts.

 In a similar vein, using information from our analysis into the weaknesses in web software
security by Fortify on Demand it is clear that a large percentage of vulnerabilities lie with
insecure configuration. Eliminating bugs and the resultant vulnerabilities from code won’t fix
this—even perfectly coded software can be dangerously vulnerable when misconfigured. Just
as important as using risk management in our patching efforts defenders must also remain
vigilant by auditing for insecure application deployment and similar weaknesses (such as
providing too much error information) that make it trivial for adversaries to compromise and
commandeer your web applications for nefarious means (such as redirecting to exploit kit sites).

Considering the increasing use of smartphones to store and access sensitive corporate data, we
examined the prevalent OS platforms from a malware, vulnerability, and exploit perspective.
The results of our analysis were clear, unfortunately significantly favoring the adversary.
Our Mobile Pwn2Own competition showed that existing vulnerabilities could be exploited to
see the same kinds of resulting compromises and payloads as we see on more traditional
platforms. Same methods of attack, same avenues of compromise, same targeted information
and resources, same payloads. The real difference is users don’t expect these attacks on
mobile platforms and hence aren’t modifying their behavior accordingly considering the level
of risk. While the results of the competition proved the viability of such attacks our research
into mobile malware as well as the mobile development ecosystem clearly demonstrated the
existence of much lower hanging fruit. As is the case with cyber criminals they will always take
the path of least resistance (as measured by time, complexity, and cost to carry out an attack),
which means we generally aren’t likely to see the types of attacks carried out during our Mobile
Pwn2Own competition gain any kind of significant prevalence for some time.

The world is abuzz on the “Internet of Things” and what that means to the future. Organizations
are increasingly looking to build mobile apps that promise newfound productivity and efficiency
gains, connecting people to corporate assets and sensitive data. Looking at the results of our
analysis on smartphones it is clear that if we’re not careful history—in this case from the desktop
arena—will repeat itself in more ways than should be allowed. The future of technology is an
exciting one and even more challenging from a security perspective as every year passes by.
However, with greater cooperation and a strong understanding of the attack surface of today and
tomorrow we can gain traction and take back ground from the adversaries by making it more
costly for them to be successful.

For more information on the HP Enterprise Security tools mentioned, go to
hp.com/go/sirm.

http://www.hp.com/go/sirm

Report | HP 2013 cyber risk report

Authors and contributors

The HP 2013 Cyber Risk Report is an annual collaboration among groups within HP Enterprise
Security Products, including: HP Security Research (spanning HP DVLabs, HP Fortify Software
Security Research, and the HP Zero Day Initiative), HP TippingPoint, HP Fortify, and HP ArcSight.

We would like to sincerely thank Mario Vuksan and his team at ReversingLabs for the
contribution of research, data, and reprint rights.

Rate this documentShare with colleagues

Sign up for updates
hp.com/go/getupdated

This is an HP Indigo digital print.

© Copyright 2013–2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Apple is a trademark of Apple Computer, Inc., registered in the U.S. and other countries. Google is a trademark of Google Inc. Microsoft, Windows, and Internet
Explorer are U.S. registered trademarks of Microsoft Corporation. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

4AA4-5495ENW, January 2014, Rev. 2

Authors Contributors

Joy Marie Forsythe Jesse Michael Emerson

Brian Gorenc Alexander Hoole

Heather Goudey Prajakta Jagdale

Abdul-Aziz Hariri Jason Lancaster

Scott Lambert Matias Madou

John Park Matt Molinyawe

Joe Sechman Alvaro Munoz

Nidhi Shah Sasi Siddharth Muthurajan

Jasiel Spelman Yekaterina Tsipenyuk O’Neil

Jewel Timpe Ted Ross

Jacob West Shannon Sabens

Todd Tabor

Mario Vuksan (ReversingLabs)

Dave Weinstein

Stephanie Wisdom

Diana Wong

http://
http://
http://
http://
http://www.hp.com/go/getupdated

